Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Asgreen
1
75 kgVingegaard
2
58 kgGuldhammer
3
66 kgBugter
4
81 kgKamp
5
74 kgGregaard
6
66 kgBjerg
8
78 kgSchultz
10
60 kgReihs
13
75 kgKrigbaum
14
79 kgCarbel
15
73 kgMeijers
16
70 kgBakker
17
74.5 kgTræen
23
63 kgSørensen
24
64 kgHulgaard
25
73 kgBregnhøj
26
63 kgSantoro
28
53 kgvan den Dool
29
68 kgAhlstrand
31
72 kgMulhern
32
75 kgLisson
34
73 kgManninen
37
70 kg
1
75 kgVingegaard
2
58 kgGuldhammer
3
66 kgBugter
4
81 kgKamp
5
74 kgGregaard
6
66 kgBjerg
8
78 kgSchultz
10
60 kgReihs
13
75 kgKrigbaum
14
79 kgCarbel
15
73 kgMeijers
16
70 kgBakker
17
74.5 kgTræen
23
63 kgSørensen
24
64 kgHulgaard
25
73 kgBregnhøj
26
63 kgSantoro
28
53 kgvan den Dool
29
68 kgAhlstrand
31
72 kgMulhern
32
75 kgLisson
34
73 kgManninen
37
70 kg
Weight (KG) →
Result →
81
53
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | ASGREEN Kasper | 75 |
2 | VINGEGAARD Jonas | 58 |
3 | GULDHAMMER Rasmus | 66 |
4 | BUGTER Luuc | 81 |
5 | KAMP Alexander | 74 |
6 | GREGAARD Jonas | 66 |
8 | BJERG Mikkel | 78 |
10 | SCHULTZ Jesper | 60 |
13 | REIHS Michael | 75 |
14 | KRIGBAUM Mathias | 79 |
15 | CARBEL Michael | 73 |
16 | MEIJERS Daan | 70 |
17 | BAKKER Dennis | 74.5 |
23 | TRÆEN Torstein | 63 |
24 | SØRENSEN Chris Anker | 64 |
25 | HULGAARD Morten | 73 |
26 | BREGNHØJ Mathias | 63 |
28 | SANTORO Antonio | 53 |
29 | VAN DEN DOOL Jens | 68 |
31 | AHLSTRAND Jonas | 72 |
32 | MULHERN Mitchell | 75 |
34 | LISSON Christoffer | 73 |
37 | MANNINEN Matti | 70 |