Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Mazur
3
73 kgPiątek
5
71 kgKrotký
7
73 kgSapa
8
82 kgMahorič
10
68 kgKiendyś
14
78 kgHuizenga
16
72 kgWitecki
21
70 kgRiška
22
73 kgGazvoda
27
72 kgMarin
34
67 kgRomanik
41
62 kgGaliński
47
63 kgMol
65
83 kgPawlak
70
73 kgHvastija
74
75 kgBodnar
75
77 kgKvasina
76
72 kg
3
73 kgPiątek
5
71 kgKrotký
7
73 kgSapa
8
82 kgMahorič
10
68 kgKiendyś
14
78 kgHuizenga
16
72 kgWitecki
21
70 kgRiška
22
73 kgGazvoda
27
72 kgMarin
34
67 kgRomanik
41
62 kgGaliński
47
63 kgMol
65
83 kgPawlak
70
73 kgHvastija
74
75 kgBodnar
75
77 kgKvasina
76
72 kg
Weight (KG) →
Result →
83
62
3
76
# | Rider | Weight (KG) |
---|---|---|
3 | MAZUR Peter | 73 |
5 | PIĄTEK Zbigniew | 71 |
7 | KROTKÝ Rostislav | 73 |
8 | SAPA Marcin | 82 |
10 | MAHORIČ Mitja | 68 |
14 | KIENDYŚ Tomasz | 78 |
16 | HUIZENGA Jenning | 72 |
21 | WITECKI Mariusz | 70 |
22 | RIŠKA Martin | 73 |
27 | GAZVODA Gregor | 72 |
34 | MARIN Matej | 67 |
41 | ROMANIK Radosław | 62 |
47 | GALIŃSKI Marek | 63 |
65 | MOL Wouter | 83 |
70 | PAWLAK Wojciech | 73 |
74 | HVASTIJA Martin | 75 |
75 | BODNAR Maciej | 77 |
76 | KVASINA Matija | 72 |