Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 70
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Bodnar
1
68 kgKiendyś
2
78 kgBengsch
4
85 kgSagan
10
78 kgCharucki
15
64 kgPfingsten
17
69 kgZieliński
19
61 kgLisowicz
20
85 kgStachowiak
24
62 kgKohut
30
65 kgLagkuti
31
68 kgTybor
34
72 kgSelig
36
80 kgRomanik
38
62 kgBaranowski
40
68 kgMahďar
44
61 kgSeubert
45
73 kgPodlaski
49
68 kgKomar
54
73 kg
1
68 kgKiendyś
2
78 kgBengsch
4
85 kgSagan
10
78 kgCharucki
15
64 kgPfingsten
17
69 kgZieliński
19
61 kgLisowicz
20
85 kgStachowiak
24
62 kgKohut
30
65 kgLagkuti
31
68 kgTybor
34
72 kgSelig
36
80 kgRomanik
38
62 kgBaranowski
40
68 kgMahďar
44
61 kgSeubert
45
73 kgPodlaski
49
68 kgKomar
54
73 kg
Weight (KG) →
Result →
85
61
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | BODNAR Łukasz | 68 |
2 | KIENDYŚ Tomasz | 78 |
4 | BENGSCH Robert | 85 |
10 | SAGAN Peter | 78 |
15 | CHARUCKI Paweł | 64 |
17 | PFINGSTEN Christoph | 69 |
19 | ZIELIńSKI Kamil | 61 |
20 | LISOWICZ Tomasz | 85 |
24 | STACHOWIAK Adam | 62 |
30 | KOHUT Sławomir | 65 |
31 | LAGKUTI Sergiy | 68 |
34 | TYBOR Patrik | 72 |
36 | SELIG Rüdiger | 80 |
38 | ROMANIK Radosław | 62 |
40 | BARANOWSKI Dariusz | 68 |
44 | MAHĎAR Martin | 61 |
45 | SEUBERT Timon | 73 |
49 | PODLASKI Michał | 68 |
54 | KOMAR Mateusz | 73 |