Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sagan
2
78 kgSelig
3
80 kgStachowiak
6
62 kgPfingsten
7
69 kgKohut
10
65 kgBengsch
11
85 kgSeubert
15
73 kgBodnar
16
68 kgPodlaski
18
68 kgMahďar
19
61 kgKiendyś
32
78 kgZieliński
37
61 kgCharucki
38
64 kgLagkuti
45
68 kgRomanik
49
62 kgTybor
50
72 kgBaranowski
54
68 kgLisowicz
55
85 kgKomar
57
73 kg
2
78 kgSelig
3
80 kgStachowiak
6
62 kgPfingsten
7
69 kgKohut
10
65 kgBengsch
11
85 kgSeubert
15
73 kgBodnar
16
68 kgPodlaski
18
68 kgMahďar
19
61 kgKiendyś
32
78 kgZieliński
37
61 kgCharucki
38
64 kgLagkuti
45
68 kgRomanik
49
62 kgTybor
50
72 kgBaranowski
54
68 kgLisowicz
55
85 kgKomar
57
73 kg
Weight (KG) →
Result →
85
61
2
57
# | Rider | Weight (KG) |
---|---|---|
2 | SAGAN Peter | 78 |
3 | SELIG Rüdiger | 80 |
6 | STACHOWIAK Adam | 62 |
7 | PFINGSTEN Christoph | 69 |
10 | KOHUT Sławomir | 65 |
11 | BENGSCH Robert | 85 |
15 | SEUBERT Timon | 73 |
16 | BODNAR Łukasz | 68 |
18 | PODLASKI Michał | 68 |
19 | MAHĎAR Martin | 61 |
32 | KIENDYŚ Tomasz | 78 |
37 | ZIELIńSKI Kamil | 61 |
38 | CHARUCKI Paweł | 64 |
45 | LAGKUTI Sergiy | 68 |
49 | ROMANIK Radosław | 62 |
50 | TYBOR Patrik | 72 |
54 | BARANOWSKI Dariusz | 68 |
55 | LISOWICZ Tomasz | 85 |
57 | KOMAR Mateusz | 73 |