Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Sagan
1
78 kgTybor
6
72 kgPodlaski
7
68 kgBengsch
8
85 kgBodnar
9
68 kgMahďar
11
61 kgKohut
12
65 kgStachowiak
18
62 kgKiendyś
20
78 kgZieliński
21
61 kgPfingsten
27
69 kgLagkuti
32
68 kgRomanik
39
62 kgBaranowski
40
68 kgCharucki
41
64 kgSeubert
45
73 kgLisowicz
47
85 kgKomar
48
73 kgSelig
53
80 kg
1
78 kgTybor
6
72 kgPodlaski
7
68 kgBengsch
8
85 kgBodnar
9
68 kgMahďar
11
61 kgKohut
12
65 kgStachowiak
18
62 kgKiendyś
20
78 kgZieliński
21
61 kgPfingsten
27
69 kgLagkuti
32
68 kgRomanik
39
62 kgBaranowski
40
68 kgCharucki
41
64 kgSeubert
45
73 kgLisowicz
47
85 kgKomar
48
73 kgSelig
53
80 kg
Weight (KG) →
Result →
85
61
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
6 | TYBOR Patrik | 72 |
7 | PODLASKI Michał | 68 |
8 | BENGSCH Robert | 85 |
9 | BODNAR Łukasz | 68 |
11 | MAHĎAR Martin | 61 |
12 | KOHUT Sławomir | 65 |
18 | STACHOWIAK Adam | 62 |
20 | KIENDYŚ Tomasz | 78 |
21 | ZIELIńSKI Kamil | 61 |
27 | PFINGSTEN Christoph | 69 |
32 | LAGKUTI Sergiy | 68 |
39 | ROMANIK Radosław | 62 |
40 | BARANOWSKI Dariusz | 68 |
41 | CHARUCKI Paweł | 64 |
45 | SEUBERT Timon | 73 |
47 | LISOWICZ Tomasz | 85 |
48 | KOMAR Mateusz | 73 |
53 | SELIG Rüdiger | 80 |