Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Gudmestad
1
82 kgLunder
2
78 kgRudyk
3
76 kgBárta
4
79 kgNolde
5
79 kgBabor
6
79 kgKelemen
7
70 kgBanaszek
8
75 kgPeltonen
10
69 kgvan der Horst
11
62 kgStosz
12
70 kgJägeler
13
71 kgPaterski
14
73 kgŠtoček
15
80 kgKaňkovský
16
83 kgFinkšt
21
70 kgWeber
23
78 kgRoos
24
76 kgSowinski
25
63 kgVasilyev
27
70 kgDrost
28
57 kgBárta
29
75 kgSimiński
31
71 kg
1
82 kgLunder
2
78 kgRudyk
3
76 kgBárta
4
79 kgNolde
5
79 kgBabor
6
79 kgKelemen
7
70 kgBanaszek
8
75 kgPeltonen
10
69 kgvan der Horst
11
62 kgStosz
12
70 kgJägeler
13
71 kgPaterski
14
73 kgŠtoček
15
80 kgKaňkovský
16
83 kgFinkšt
21
70 kgWeber
23
78 kgRoos
24
76 kgSowinski
25
63 kgVasilyev
27
70 kgDrost
28
57 kgBárta
29
75 kgSimiński
31
71 kg
Weight (KG) →
Result →
83
57
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | GUDMESTAD Tord | 82 |
2 | LUNDER Eirik | 78 |
3 | RUDYK Bartosz | 76 |
4 | BÁRTA Tomáš | 79 |
5 | NOLDE Tobias | 79 |
6 | BABOR Daniel | 79 |
7 | KELEMEN Petr | 70 |
8 | BANASZEK Alan | 75 |
10 | PELTONEN Ukko Iisakki | 69 |
11 | VAN DER HORST Dennis | 62 |
12 | STOSZ Patryk | 70 |
13 | JÄGELER Robert | 71 |
14 | PATERSKI Maciej | 73 |
15 | ŠTOČEK Matúš | 80 |
16 | KAŇKOVSKÝ Alois | 83 |
21 | FINKŠT Tilen | 70 |
23 | WEBER Philip | 78 |
24 | ROOS Andre | 76 |
25 | SOWINSKI Artur | 63 |
27 | VASILYEV Maksym | 70 |
28 | DROST Melvin | 57 |
29 | BÁRTA Jan | 75 |
31 | SIMIŃSKI Kacper | 71 |