Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bogusławski
1
77 kgRasch
2
71 kgBárta
3
79 kgLindner
6
71 kgvan der Horst
7
62 kgBanaszek
8
75 kgBen Moshe
12
61 kgLunder
15
78 kgSławek
16
73 kgNolde
18
79 kgKrawczyk
19
79 kgLašinis
20
69 kgHaller
21
68 kgFranz
23
60 kgMaślak
24
73 kgMunk-Olsen
25
68 kgRaisberg
29
67 kgOelke
30
78 kg
1
77 kgRasch
2
71 kgBárta
3
79 kgLindner
6
71 kgvan der Horst
7
62 kgBanaszek
8
75 kgBen Moshe
12
61 kgLunder
15
78 kgSławek
16
73 kgNolde
18
79 kgKrawczyk
19
79 kgLašinis
20
69 kgHaller
21
68 kgFranz
23
60 kgMaślak
24
73 kgMunk-Olsen
25
68 kgRaisberg
29
67 kgOelke
30
78 kg
Weight (KG) →
Result →
79
60
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | BOGUSŁAWSKI Marceli | 77 |
2 | RASCH Jesper | 71 |
3 | BÁRTA Tomáš | 79 |
6 | LINDNER Tom | 71 |
7 | VAN DER HORST Dennis | 62 |
8 | BANASZEK Alan | 75 |
12 | BEN MOSHE Yuval | 61 |
15 | LUNDER Eirik | 78 |
16 | SŁAWEK Damian | 73 |
18 | NOLDE Tobias | 79 |
19 | KRAWCZYK Szymon | 79 |
20 | LAŠINIS Venantas | 69 |
21 | HALLER Patrick | 68 |
23 | FRANZ Toni | 60 |
24 | MAŚLAK Piotr | 73 |
25 | MUNK-OLSEN Oscar | 68 |
29 | RAISBERG Nadav | 67 |
30 | OELKE Tim | 78 |