Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 91
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Tchmil
1
75 kgWauters
2
73 kgMichaelsen
3
79 kgPiziks
4
70 kgHøj
6
80 kgKoerts
7
78 kgvan der Poel
11
70 kgPeers
12
73 kgFeys
13
80 kgPankov
16
72 kgDe Waele
17
62 kgvan Heeswijk
18
73 kgDetilloux
21
62 kgMattan
23
69 kgThijs
27
69 kgVan de Wouwer
32
66 kgDe Wolf
35
67 kgVandenbroucke
38
67 kgMerckx
40
77 kgGroenendaal
44
66 kgDe Neef
50
75 kg
1
75 kgWauters
2
73 kgMichaelsen
3
79 kgPiziks
4
70 kgHøj
6
80 kgKoerts
7
78 kgvan der Poel
11
70 kgPeers
12
73 kgFeys
13
80 kgPankov
16
72 kgDe Waele
17
62 kgvan Heeswijk
18
73 kgDetilloux
21
62 kgMattan
23
69 kgThijs
27
69 kgVan de Wouwer
32
66 kgDe Wolf
35
67 kgVandenbroucke
38
67 kgMerckx
40
77 kgGroenendaal
44
66 kgDe Neef
50
75 kg
Weight (KG) →
Result →
80
62
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | TCHMIL Andrei | 75 |
2 | WAUTERS Marc | 73 |
3 | MICHAELSEN Lars | 79 |
4 | PIZIKS Arvis | 70 |
6 | HØJ Frank | 80 |
7 | KOERTS Jans | 78 |
11 | VAN DER POEL Adrie | 70 |
12 | PEERS Chris | 73 |
13 | FEYS Wim | 80 |
16 | PANKOV Oleg | 72 |
17 | DE WAELE Fabien | 62 |
18 | VAN HEESWIJK Max | 73 |
21 | DETILLOUX Christophe | 62 |
23 | MATTAN Nico | 69 |
27 | THIJS Erwin | 69 |
32 | VAN DE WOUWER Kurt | 66 |
35 | DE WOLF Steve | 67 |
38 | VANDENBROUCKE Frank | 67 |
40 | MERCKX Axel | 77 |
44 | GROENENDAAL Richard | 66 |
50 | DE NEEF Steven | 75 |