Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 40
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Ivanov
1
73 kgDetilloux
2
62 kgBoven
4
65 kgVan Hyfte
8
70 kgVan de Wouwer
12
66 kgBrandt
13
66 kgBruylandts
14
63 kgBeeckman
16
66 kgFeys
20
80 kgGroenendaal
21
66 kgNiermann
25
64 kgLeukemans
27
67 kgRoesems
28
81 kgVerbrugghe
29
69 kgPeers
30
73 kgStreel
32
69 kgHulsmans
33
75 kgDe Neef
34
75 kg
1
73 kgDetilloux
2
62 kgBoven
4
65 kgVan Hyfte
8
70 kgVan de Wouwer
12
66 kgBrandt
13
66 kgBruylandts
14
63 kgBeeckman
16
66 kgFeys
20
80 kgGroenendaal
21
66 kgNiermann
25
64 kgLeukemans
27
67 kgRoesems
28
81 kgVerbrugghe
29
69 kgPeers
30
73 kgStreel
32
69 kgHulsmans
33
75 kgDe Neef
34
75 kg
Weight (KG) →
Result →
81
62
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | IVANOV Sergei | 73 |
2 | DETILLOUX Christophe | 62 |
4 | BOVEN Jan | 65 |
8 | VAN HYFTE Paul | 70 |
12 | VAN DE WOUWER Kurt | 66 |
13 | BRANDT Christophe | 66 |
14 | BRUYLANDTS Dave | 63 |
16 | BEECKMAN Koen | 66 |
20 | FEYS Wim | 80 |
21 | GROENENDAAL Richard | 66 |
25 | NIERMANN Grischa | 64 |
27 | LEUKEMANS Björn | 67 |
28 | ROESEMS Bert | 81 |
29 | VERBRUGGHE Ief | 69 |
30 | PEERS Chris | 73 |
32 | STREEL Marc | 69 |
33 | HULSMANS Kevin | 75 |
34 | DE NEEF Steven | 75 |