Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Pronk
1
73 kgBrandt
3
66 kgVasseur
4
70 kgBruylandts
5
63 kgBak
6
76 kgVan Impe
8
75 kgOmloop
9
78 kgDe Clercq
10
80 kgVansevenant
12
65 kgVerheyen
13
68 kgVierhouten
16
71 kgAbakoumov
17
68 kgDe Weert
18
70 kgDe Groote
19
71 kgThijs
20
69 kgVan Huffel
21
66 kgCappelle
23
71 kgArdila
26
58 kg
1
73 kgBrandt
3
66 kgVasseur
4
70 kgBruylandts
5
63 kgBak
6
76 kgVan Impe
8
75 kgOmloop
9
78 kgDe Clercq
10
80 kgVansevenant
12
65 kgVerheyen
13
68 kgVierhouten
16
71 kgAbakoumov
17
68 kgDe Weert
18
70 kgDe Groote
19
71 kgThijs
20
69 kgVan Huffel
21
66 kgCappelle
23
71 kgArdila
26
58 kg
Weight (KG) →
Result →
80
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | PRONK Matthé | 73 |
3 | BRANDT Christophe | 66 |
4 | VASSEUR Cédric | 70 |
5 | BRUYLANDTS Dave | 63 |
6 | BAK Lars Ytting | 76 |
8 | VAN IMPE Kevin | 75 |
9 | OMLOOP Geert | 78 |
10 | DE CLERCQ Hans | 80 |
12 | VANSEVENANT Wim | 65 |
13 | VERHEYEN Geert | 68 |
16 | VIERHOUTEN Aart | 71 |
17 | ABAKOUMOV Igor | 68 |
18 | DE WEERT Kevin | 70 |
19 | DE GROOTE Thierry | 71 |
20 | THIJS Erwin | 69 |
21 | VAN HUFFEL Wim | 66 |
23 | CAPPELLE Andy | 71 |
26 | ARDILA Mauricio Alberto | 58 |