Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Pučinskaitė
1
54 kgMelchers
2
59 kgBastianelli
3
60 kgLjungskog
4
57 kgKupfernagel
5
68 kgGuderzo
8
54 kgBecker
9
64 kgGunnewijk
10
67 kgBaccaille
12
61 kgMoreno
14
52 kgHenrion
16
60 kgFerrier-Bruneau
23
53 kgCantele
24
58 kgVisser
29
59 kgHohl
33
55 kgMeng
38
65 kgMin
40
56 kgOlaberria
51
61 kg
1
54 kgMelchers
2
59 kgBastianelli
3
60 kgLjungskog
4
57 kgKupfernagel
5
68 kgGuderzo
8
54 kgBecker
9
64 kgGunnewijk
10
67 kgBaccaille
12
61 kgMoreno
14
52 kgHenrion
16
60 kgFerrier-Bruneau
23
53 kgCantele
24
58 kgVisser
29
59 kgHohl
33
55 kgMeng
38
65 kgMin
40
56 kgOlaberria
51
61 kg
Weight (KG) →
Result →
68
52
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | PUČINSKAITĖ Edita | 54 |
2 | MELCHERS Mirjam | 59 |
3 | BASTIANELLI Marta | 60 |
4 | LJUNGSKOG Susanne | 57 |
5 | KUPFERNAGEL Hanka | 68 |
8 | GUDERZO Tatiana | 54 |
9 | BECKER Charlotte | 64 |
10 | GUNNEWIJK Loes | 67 |
12 | BACCAILLE Monia | 61 |
14 | MORENO María Isabel | 52 |
16 | HENRION Ludivine | 60 |
23 | FERRIER-BRUNEAU Christel | 53 |
24 | CANTELE Noemi | 58 |
29 | VISSER Adrie | 59 |
33 | HOHL Jennifer | 55 |
38 | MENG Lang | 65 |
40 | MIN Gao | 56 |
51 | OLABERRIA Leire | 61 |