Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 61
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Steels
3
55 kgGhekiere
5
52 kgAalerud
6
54 kgMeijering
8
54 kgArzuffi
12
52 kgKiesenhofer
13
54 kgDronova-Balabolina
15
63 kgPintar
16
56 kgManly
17
53 kgStannard
19
55 kgNorsgaard
23
65 kgZanardi
24
56 kgRamirez
31
54 kgErić
34
53 kgNovolodskaia
39
57 kgGafinovitz
45
52 kgGonzález
58
51 kgRodríguez
67
57 kgBerton
70
59 kgAllen
71
55 kgTacey
73
62 kgHenttala
78
58 kg
3
55 kgGhekiere
5
52 kgAalerud
6
54 kgMeijering
8
54 kgArzuffi
12
52 kgKiesenhofer
13
54 kgDronova-Balabolina
15
63 kgPintar
16
56 kgManly
17
53 kgStannard
19
55 kgNorsgaard
23
65 kgZanardi
24
56 kgRamirez
31
54 kgErić
34
53 kgNovolodskaia
39
57 kgGafinovitz
45
52 kgGonzález
58
51 kgRodríguez
67
57 kgBerton
70
59 kgAllen
71
55 kgTacey
73
62 kgHenttala
78
58 kg
Weight (KG) →
Result →
65
51
3
78
# | Rider | Weight (KG) |
---|---|---|
3 | STEELS Claire | 55 |
5 | GHEKIERE Justine | 52 |
6 | AALERUD Katrine | 54 |
8 | MEIJERING Mareille | 54 |
12 | ARZUFFI Alice Maria | 52 |
13 | KIESENHOFER Anna | 54 |
15 | DRONOVA-BALABOLINA Tamara | 63 |
16 | PINTAR Urška | 56 |
17 | MANLY Alexandra | 53 |
19 | STANNARD Elizabeth | 55 |
23 | NORSGAARD Emma | 65 |
24 | ZANARDI Silvia | 56 |
31 | RAMIREZ Andrea | 54 |
34 | ERIĆ Jelena | 53 |
39 | NOVOLODSKAIA Maria | 57 |
45 | GAFINOVITZ Rotem | 52 |
58 | GONZÁLEZ Alicia | 51 |
67 | RODRÍGUEZ Gloria | 57 |
70 | BERTON Nina | 59 |
71 | ALLEN Jessica | 55 |
73 | TACEY April | 62 |
78 | HENTTALA Lotta | 58 |