Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 49
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Curinier
4
53 kgMeijering
5
54 kgMalcotti
7
52 kgLongo Borghini
9
59 kgSpratt
11
55 kgVan Dam
22
58 kgMackaij
26
57 kgJaskulska
29
52 kgEdwards
31
59 kgDronova-Balabolina
33
63 kgBalsamo
35
55 kgPersico
36
53 kgJackson
38
63 kgSchweinberger
45
63 kgHartmann
48
56 kgLarrarte
58
63 kgCopponi
60
55 kgBiannic
61
64 kgMissiaggia
66
53 kgLudwig
73
55 kg
4
53 kgMeijering
5
54 kgMalcotti
7
52 kgLongo Borghini
9
59 kgSpratt
11
55 kgVan Dam
22
58 kgMackaij
26
57 kgJaskulska
29
52 kgEdwards
31
59 kgDronova-Balabolina
33
63 kgBalsamo
35
55 kgPersico
36
53 kgJackson
38
63 kgSchweinberger
45
63 kgHartmann
48
56 kgLarrarte
58
63 kgCopponi
60
55 kgBiannic
61
64 kgMissiaggia
66
53 kgLudwig
73
55 kg
Weight (KG) →
Result →
64
52
4
73
# | Rider | Weight (KG) |
---|---|---|
4 | CURINIER Léa | 53 |
5 | MEIJERING Mareille | 54 |
7 | MALCOTTI Barbara | 52 |
9 | LONGO BORGHINI Elisa | 59 |
11 | SPRATT Amanda | 55 |
22 | VAN DAM Sarah | 58 |
26 | MACKAIJ Floortje | 57 |
29 | JASKULSKA Marta | 52 |
31 | EDWARDS Ruth | 59 |
33 | DRONOVA-BALABOLINA Tamara | 63 |
35 | BALSAMO Elisa | 55 |
36 | PERSICO Silvia | 53 |
38 | JACKSON Alison | 63 |
45 | SCHWEINBERGER Kathrin | 63 |
48 | HARTMANN Elena | 56 |
58 | LARRARTE Eukene | 63 |
60 | COPPONI Clara | 55 |
61 | BIANNIC Aude | 64 |
66 | MISSIAGGIA Alessia | 53 |
73 | LUDWIG Hannah | 55 |