Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Lilholt
1
72 kgvan der Poel
3
70 kgNijdam
4
70 kgPeeters
5
76 kgBortolami
7
73 kgWampers
8
82 kgDuclos-Lassalle
10
73 kgMuseeuw
11
71 kgScirea
14
80 kgMarie
16
68 kgRiis
19
71 kgVeenstra
21
70 kgFondriest
23
70 kgBauer
24
72 kgSolleveld
26
93 kgPieters
28
82 kgGayant
37
69 kgVanderaerden
40
74 kgBomans
42
74 kgSergeant
43
76 kgPlanckaert
44
69 kgDe Wilde
45
70 kgSchur
47
73 kg
1
72 kgvan der Poel
3
70 kgNijdam
4
70 kgPeeters
5
76 kgBortolami
7
73 kgWampers
8
82 kgDuclos-Lassalle
10
73 kgMuseeuw
11
71 kgScirea
14
80 kgMarie
16
68 kgRiis
19
71 kgVeenstra
21
70 kgFondriest
23
70 kgBauer
24
72 kgSolleveld
26
93 kgPieters
28
82 kgGayant
37
69 kgVanderaerden
40
74 kgBomans
42
74 kgSergeant
43
76 kgPlanckaert
44
69 kgDe Wilde
45
70 kgSchur
47
73 kg
Weight (KG) →
Result →
93
68
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | LILHOLT Søren | 72 |
3 | VAN DER POEL Adrie | 70 |
4 | NIJDAM Jelle | 70 |
5 | PEETERS Wilfried | 76 |
7 | BORTOLAMI Gianluca | 73 |
8 | WAMPERS Jean-Marie | 82 |
10 | DUCLOS-LASSALLE Gilbert | 73 |
11 | MUSEEUW Johan | 71 |
14 | SCIREA Mario | 80 |
16 | MARIE Thierry | 68 |
19 | RIIS Bjarne | 71 |
21 | VEENSTRA Wiebren | 70 |
23 | FONDRIEST Maurizio | 70 |
24 | BAUER Steve | 72 |
26 | SOLLEVELD Gerrit | 93 |
28 | PIETERS Peter | 82 |
37 | GAYANT Martial | 69 |
40 | VANDERAERDEN Eric | 74 |
42 | BOMANS Carlo | 74 |
43 | SERGEANT Marc | 76 |
44 | PLANCKAERT Eddy | 69 |
45 | DE WILDE Etienne | 70 |
47 | SCHUR Jan | 73 |