Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Leysen
1
75 kgWesemann
2
72 kgBomans
3
74 kgPlanckaert
4
70 kgHoffman
5
80 kgSørensen
8
70 kgChiappucci
12
67 kgYates
14
74 kgDietz
16
69 kgZberg
17
72 kgDe Clercq
19
66 kgAndreu
20
77 kgCipollini
21
77 kgSciandri
23
75 kgHundertmarck
24
72 kgFondriest
25
70 kgSergeant
26
76 kgArmstrong
27
72 kgMuseeuw
28
71 kgBallerini
29
78 kgBaldato
30
60 kgScirea
31
80 kg
1
75 kgWesemann
2
72 kgBomans
3
74 kgPlanckaert
4
70 kgHoffman
5
80 kgSørensen
8
70 kgChiappucci
12
67 kgYates
14
74 kgDietz
16
69 kgZberg
17
72 kgDe Clercq
19
66 kgAndreu
20
77 kgCipollini
21
77 kgSciandri
23
75 kgHundertmarck
24
72 kgFondriest
25
70 kgSergeant
26
76 kgArmstrong
27
72 kgMuseeuw
28
71 kgBallerini
29
78 kgBaldato
30
60 kgScirea
31
80 kg
Weight (KG) →
Result →
80
60
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | LEYSEN Bart | 75 |
2 | WESEMANN Steffen | 72 |
3 | BOMANS Carlo | 74 |
4 | PLANCKAERT Jo | 70 |
5 | HOFFMAN Tristan | 80 |
8 | SØRENSEN Rolf | 70 |
12 | CHIAPPUCCI Claudio | 67 |
14 | YATES Sean | 74 |
16 | DIETZ Bert | 69 |
17 | ZBERG Beat | 72 |
19 | DE CLERCQ Mario | 66 |
20 | ANDREU Frankie | 77 |
21 | CIPOLLINI Mario | 77 |
23 | SCIANDRI Maximilian | 75 |
24 | HUNDERTMARCK Kai | 72 |
25 | FONDRIEST Maurizio | 70 |
26 | SERGEANT Marc | 76 |
27 | ARMSTRONG Lance | 72 |
28 | MUSEEUW Johan | 71 |
29 | BALLERINI Franco | 78 |
30 | BALDATO Fabio | 60 |
31 | SCIREA Mario | 80 |