Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
van Dijk
1
71 kgvan der Breggen
2
56 kgPieters
3
58 kgBrennauer
4
63 kgGuarischi
5
57 kgHenttala
6
58 kgKlein
7
61 kgWood
8
59 kgMajerus
10
56 kgvan Vleuten
11
59 kgDideriksen
12
62 kgBrand
13
57 kgvan den Broek-Blaak
14
64 kgKröger
16
77 kgMackaij
17
57 kgBarnes
19
52 kgMoberg
21
56 kg
1
71 kgvan der Breggen
2
56 kgPieters
3
58 kgBrennauer
4
63 kgGuarischi
5
57 kgHenttala
6
58 kgKlein
7
61 kgWood
8
59 kgMajerus
10
56 kgvan Vleuten
11
59 kgDideriksen
12
62 kgBrand
13
57 kgvan den Broek-Blaak
14
64 kgKröger
16
77 kgMackaij
17
57 kgBarnes
19
52 kgMoberg
21
56 kg
Weight (KG) →
Result →
77
52
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJK Ellen | 71 |
2 | VAN DER BREGGEN Anna | 56 |
3 | PIETERS Amy | 58 |
4 | BRENNAUER Lisa | 63 |
5 | GUARISCHI Barbara | 57 |
6 | HENTTALA Lotta | 58 |
7 | KLEIN Lisa | 61 |
8 | WOOD Alice | 59 |
10 | MAJERUS Christine | 56 |
11 | VAN VLEUTEN Annemiek | 59 |
12 | DIDERIKSEN Amalie | 62 |
13 | BRAND Lucinda | 57 |
14 | VAN DEN BROEK-BLAAK Chantal | 64 |
16 | KRÖGER Mieke | 77 |
17 | MACKAIJ Floortje | 57 |
19 | BARNES Hannah | 52 |
21 | MOBERG Emilie | 56 |