Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Bruyneel
1
71 kgMuseeuw
2
71 kgEarley
3
62 kgMadiot
7
68 kgEkimov
9
69 kgBaguet
10
67 kgDernies
11
75 kgBauer
12
72 kgKelly
15
77 kgHolm Sørensen
20
77 kgSergeant
26
76 kgWampers
27
82 kgDufaux
30
60 kgJärmann
31
73 kgGayant
40
69 kgGianetti
41
62 kgChiappucci
44
67 kgLelli
46
69 kgDuclos-Lassalle
48
73 kgBreukink
53
70 kgPeeters
54
76 kg
1
71 kgMuseeuw
2
71 kgEarley
3
62 kgMadiot
7
68 kgEkimov
9
69 kgBaguet
10
67 kgDernies
11
75 kgBauer
12
72 kgKelly
15
77 kgHolm Sørensen
20
77 kgSergeant
26
76 kgWampers
27
82 kgDufaux
30
60 kgJärmann
31
73 kgGayant
40
69 kgGianetti
41
62 kgChiappucci
44
67 kgLelli
46
69 kgDuclos-Lassalle
48
73 kgBreukink
53
70 kgPeeters
54
76 kg
Weight (KG) →
Result →
82
60
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | BRUYNEEL Johan | 71 |
2 | MUSEEUW Johan | 71 |
3 | EARLEY Martin | 62 |
7 | MADIOT Marc | 68 |
9 | EKIMOV Viatcheslav | 69 |
10 | BAGUET Serge | 67 |
11 | DERNIES Michel | 75 |
12 | BAUER Steve | 72 |
15 | KELLY Sean | 77 |
20 | HOLM SØRENSEN Brian | 77 |
26 | SERGEANT Marc | 76 |
27 | WAMPERS Jean-Marie | 82 |
30 | DUFAUX Laurent | 60 |
31 | JÄRMANN Rolf | 73 |
40 | GAYANT Martial | 69 |
41 | GIANETTI Mauro | 62 |
44 | CHIAPPUCCI Claudio | 67 |
46 | LELLI Massimiliano | 69 |
48 | DUCLOS-LASSALLE Gilbert | 73 |
53 | BREUKINK Erik | 70 |
54 | PEETERS Wilfried | 76 |