Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Zabel
1
69 kgBorrajo
2
76 kgZberg
3
69 kgCelestino
4
67 kgKopp
5
68 kgBenčík
6
73 kgZamana
7
74 kgSchumacher
9
71 kgBrandt
10
66 kgThijs
12
69 kgTrampusch
13
60 kgKroon
14
67 kgGeorge
15
61 kgLudewig
16
75 kgWegmann
17
60 kgWesemann
18
72 kgBaguet
19
67 kgAstarloa
20
61 kgEfimkin
21
67 kg
1
69 kgBorrajo
2
76 kgZberg
3
69 kgCelestino
4
67 kgKopp
5
68 kgBenčík
6
73 kgZamana
7
74 kgSchumacher
9
71 kgBrandt
10
66 kgThijs
12
69 kgTrampusch
13
60 kgKroon
14
67 kgGeorge
15
61 kgLudewig
16
75 kgWegmann
17
60 kgWesemann
18
72 kgBaguet
19
67 kgAstarloa
20
61 kgEfimkin
21
67 kg
Weight (KG) →
Result →
76
60
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | BORRAJO Alejandro Alberto | 76 |
3 | ZBERG Markus | 69 |
4 | CELESTINO Mirko | 67 |
5 | KOPP David | 68 |
6 | BENČÍK Petr | 73 |
7 | ZAMANA Cezary | 74 |
9 | SCHUMACHER Stefan | 71 |
10 | BRANDT Christophe | 66 |
12 | THIJS Erwin | 69 |
13 | TRAMPUSCH Gerhard | 60 |
14 | KROON Karsten | 67 |
15 | GEORGE David | 61 |
16 | LUDEWIG Jörg | 75 |
17 | WEGMANN Fabian | 60 |
18 | WESEMANN Steffen | 72 |
19 | BAGUET Serge | 67 |
20 | ASTARLOA Igor | 61 |
21 | EFIMKIN Vladimir | 67 |