Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 99
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Hodge
4
74 kgJeker
5
72 kgLilholt
7
72 kgBomans
9
74 kgPeeters
10
76 kgElliott
11
76 kgBallerini
20
78 kgAldag
22
75 kgDemierre
26
70 kgImboden
29
70 kgVeenstra
32
70 kgHundertmarck
33
72 kgCipollini
34
77 kgDernies
49
75 kgde Vries
53
75 kgNijdam
54
70 kgPoli
56
87 kgUgrumov
64
58 kgVerstrepen
66
66 kg
4
74 kgJeker
5
72 kgLilholt
7
72 kgBomans
9
74 kgPeeters
10
76 kgElliott
11
76 kgBallerini
20
78 kgAldag
22
75 kgDemierre
26
70 kgImboden
29
70 kgVeenstra
32
70 kgHundertmarck
33
72 kgCipollini
34
77 kgDernies
49
75 kgde Vries
53
75 kgNijdam
54
70 kgPoli
56
87 kgUgrumov
64
58 kgVerstrepen
66
66 kg
Weight (KG) →
Result →
87
58
4
66
# | Rider | Weight (KG) |
---|---|---|
4 | HODGE Stephen | 74 |
5 | JEKER Fabian | 72 |
7 | LILHOLT Søren | 72 |
9 | BOMANS Carlo | 74 |
10 | PEETERS Wilfried | 76 |
11 | ELLIOTT Malcolm | 76 |
20 | BALLERINI Franco | 78 |
22 | ALDAG Rolf | 75 |
26 | DEMIERRE Serge | 70 |
29 | IMBODEN Heinz | 70 |
32 | VEENSTRA Wiebren | 70 |
33 | HUNDERTMARCK Kai | 72 |
34 | CIPOLLINI Mario | 77 |
49 | DERNIES Michel | 75 |
53 | DE VRIES Gerrit | 75 |
54 | NIJDAM Jelle | 70 |
56 | POLI Eros | 87 |
64 | UGRUMOV Piotr | 58 |
66 | VERSTREPEN Johan | 66 |