Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -44.5 * weight + 3948
This means that on average for every extra kilogram weight a rider loses -44.5 positions in the result.
Capelle
3
73 kgKoerts
4
78 kgSimon
5
70 kgHoffman
6
80 kgTchmil
9
75 kgBouvard
990
70 kgKnaven
990
68 kgVoskamp
990
75 kgSergeant
990
76 kgGarmendia
990
68 kgPeers
990
73 kgCorvers
990
77 kgVan Bondt
990
71 kgVan Petegem
990
70 kgDuclos-Lassalle
990
73 kgMoreau
990
77 kg
3
73 kgKoerts
4
78 kgSimon
5
70 kgHoffman
6
80 kgTchmil
9
75 kgBouvard
990
70 kgKnaven
990
68 kgVoskamp
990
75 kgSergeant
990
76 kgGarmendia
990
68 kgPeers
990
73 kgCorvers
990
77 kgVan Bondt
990
71 kgVan Petegem
990
70 kgDuclos-Lassalle
990
73 kgMoreau
990
77 kg
Weight (KG) →
Result →
80
68
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | CAPELLE Christophe | 73 |
4 | KOERTS Jans | 78 |
5 | SIMON François | 70 |
6 | HOFFMAN Tristan | 80 |
9 | TCHMIL Andrei | 75 |
990 | BOUVARD Gilles | 70 |
990 | KNAVEN Servais | 68 |
990 | VOSKAMP Bart | 75 |
990 | SERGEANT Marc | 76 |
990 | GARMENDIA Aitor | 68 |
990 | PEERS Chris | 73 |
990 | CORVERS Frank | 77 |
990 | VAN BONDT Geert | 71 |
990 | VAN PETEGEM Peter | 70 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | MOREAU Francis | 77 |