Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Baldato
1
60 kgBouyer
3
65 kgScheirlinckx
4
78 kgPineau
5
65 kgVan De Walle
6
74 kgBernucci
7
72 kgFarazijn
9
69 kgCoenen
10
67 kgPlanckaert
11
70 kgLefèvre
12
67 kgCharteau
13
67 kgGabriel
14
60 kgVan Huffel
15
66 kgHøj
16
80 kgChaurreau
17
60 kgPichon
18
62 kgVansevenant
20
65 kg
1
60 kgBouyer
3
65 kgScheirlinckx
4
78 kgPineau
5
65 kgVan De Walle
6
74 kgBernucci
7
72 kgFarazijn
9
69 kgCoenen
10
67 kgPlanckaert
11
70 kgLefèvre
12
67 kgCharteau
13
67 kgGabriel
14
60 kgVan Huffel
15
66 kgHøj
16
80 kgChaurreau
17
60 kgPichon
18
62 kgVansevenant
20
65 kg
Weight (KG) →
Result →
80
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BALDATO Fabio | 60 |
3 | BOUYER Franck | 65 |
4 | SCHEIRLINCKX Staf | 78 |
5 | PINEAU Jérôme | 65 |
6 | VAN DE WALLE Jurgen | 74 |
7 | BERNUCCI Lorenzo | 72 |
9 | FARAZIJN Peter | 69 |
10 | COENEN Johan | 67 |
11 | PLANCKAERT Jo | 70 |
12 | LEFÈVRE Laurent | 67 |
13 | CHARTEAU Anthony | 67 |
14 | GABRIEL Frédéric | 60 |
15 | VAN HUFFEL Wim | 66 |
16 | HØJ Frank | 80 |
17 | CHAURREAU Íñigo | 60 |
18 | PICHON Mickaël | 62 |
20 | VANSEVENANT Wim | 65 |