Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Bichot
1
67 kgSteels
2
73 kgVoigt
3
76 kgMonfort
4
66 kgTraksel
5
72 kgLabbé
6
73 kgKirsipuu
7
80 kgJégou
8
71 kgNazon
9
74 kgHaddou
10
80 kgNapolitano
11
81 kgBaguet
12
67 kgEeckhout
13
73 kgGardeyn
14
75 kgMertens
15
67 kgThijs
16
69 kgDelpech
17
72 kgCoenen
18
67 kgHinault
19
63 kgScanlon
20
79 kgHernández
21
64 kgVan Hecke
22
69 kgPoilvet
24
71 kgVan Huffel
26
66 kg
1
67 kgSteels
2
73 kgVoigt
3
76 kgMonfort
4
66 kgTraksel
5
72 kgLabbé
6
73 kgKirsipuu
7
80 kgJégou
8
71 kgNazon
9
74 kgHaddou
10
80 kgNapolitano
11
81 kgBaguet
12
67 kgEeckhout
13
73 kgGardeyn
14
75 kgMertens
15
67 kgThijs
16
69 kgDelpech
17
72 kgCoenen
18
67 kgHinault
19
63 kgScanlon
20
79 kgHernández
21
64 kgVan Hecke
22
69 kgPoilvet
24
71 kgVan Huffel
26
66 kg
Weight (KG) →
Result →
81
63
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BICHOT Freddy | 67 |
2 | STEELS Tom | 73 |
3 | VOIGT Jens | 76 |
4 | MONFORT Maxime | 66 |
5 | TRAKSEL Bobbie | 72 |
6 | LABBÉ Arnaud | 73 |
7 | KIRSIPUU Jaan | 80 |
8 | JÉGOU Lilian | 71 |
9 | NAZON Jean-Patrick | 74 |
10 | HADDOU Saïd | 80 |
11 | NAPOLITANO Danilo | 81 |
12 | BAGUET Serge | 67 |
13 | EECKHOUT Niko | 73 |
14 | GARDEYN Gorik | 75 |
15 | MERTENS Pieter | 67 |
16 | THIJS Erwin | 69 |
17 | DELPECH Jean-Luc | 72 |
18 | COENEN Johan | 67 |
19 | HINAULT Sébastien | 63 |
20 | SCANLON Mark | 79 |
21 | HERNÁNDEZ Aitor | 64 |
22 | VAN HECKE Preben | 69 |
24 | POILVET Benoît | 71 |
26 | VAN HUFFEL Wim | 66 |