Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Voigt
1
76 kgTraksel
2
72 kgBichot
3
67 kgSteels
4
73 kgMonfort
5
66 kgLabbé
6
73 kgKirsipuu
7
80 kgJégou
8
71 kgSchleck
9
65 kgNazon
10
74 kgCoenen
11
67 kgVan Petegem
12
70 kgHaddou
13
80 kgNapolitano
14
81 kgBaguet
15
67 kgFédrigo
16
66 kgEeckhout
17
73 kgJoly
18
74 kgGardeyn
19
75 kg
1
76 kgTraksel
2
72 kgBichot
3
67 kgSteels
4
73 kgMonfort
5
66 kgLabbé
6
73 kgKirsipuu
7
80 kgJégou
8
71 kgSchleck
9
65 kgNazon
10
74 kgCoenen
11
67 kgVan Petegem
12
70 kgHaddou
13
80 kgNapolitano
14
81 kgBaguet
15
67 kgFédrigo
16
66 kgEeckhout
17
73 kgJoly
18
74 kgGardeyn
19
75 kg
Weight (KG) →
Result →
81
65
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | VOIGT Jens | 76 |
2 | TRAKSEL Bobbie | 72 |
3 | BICHOT Freddy | 67 |
4 | STEELS Tom | 73 |
5 | MONFORT Maxime | 66 |
6 | LABBÉ Arnaud | 73 |
7 | KIRSIPUU Jaan | 80 |
8 | JÉGOU Lilian | 71 |
9 | SCHLECK Fränk | 65 |
10 | NAZON Jean-Patrick | 74 |
11 | COENEN Johan | 67 |
12 | VAN PETEGEM Peter | 70 |
13 | HADDOU Saïd | 80 |
14 | NAPOLITANO Danilo | 81 |
15 | BAGUET Serge | 67 |
16 | FÉDRIGO Pierrick | 66 |
17 | EECKHOUT Niko | 73 |
18 | JOLY Sébastien | 74 |
19 | GARDEYN Gorik | 75 |