Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Voigt
1
76 kgSteels
2
73 kgTraksel
3
72 kgKirsipuu
4
80 kgBichot
5
67 kgEeckhout
6
73 kgNapolitano
7
81 kgJégou
8
71 kgMonfort
9
66 kgVasseur
11
70 kgLabbé
12
73 kgSchleck
13
65 kgGardeyn
14
75 kgNazon
15
74 kgCoenen
16
67 kgVan Petegem
17
70 kgHaddou
18
80 kgPronk
19
73 kgBaguet
20
67 kg
1
76 kgSteels
2
73 kgTraksel
3
72 kgKirsipuu
4
80 kgBichot
5
67 kgEeckhout
6
73 kgNapolitano
7
81 kgJégou
8
71 kgMonfort
9
66 kgVasseur
11
70 kgLabbé
12
73 kgSchleck
13
65 kgGardeyn
14
75 kgNazon
15
74 kgCoenen
16
67 kgVan Petegem
17
70 kgHaddou
18
80 kgPronk
19
73 kgBaguet
20
67 kg
Weight (KG) →
Result →
81
65
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VOIGT Jens | 76 |
2 | STEELS Tom | 73 |
3 | TRAKSEL Bobbie | 72 |
4 | KIRSIPUU Jaan | 80 |
5 | BICHOT Freddy | 67 |
6 | EECKHOUT Niko | 73 |
7 | NAPOLITANO Danilo | 81 |
8 | JÉGOU Lilian | 71 |
9 | MONFORT Maxime | 66 |
11 | VASSEUR Cédric | 70 |
12 | LABBÉ Arnaud | 73 |
13 | SCHLECK Fränk | 65 |
14 | GARDEYN Gorik | 75 |
15 | NAZON Jean-Patrick | 74 |
16 | COENEN Johan | 67 |
17 | VAN PETEGEM Peter | 70 |
18 | HADDOU Saïd | 80 |
19 | PRONK Matthé | 73 |
20 | BAGUET Serge | 67 |