Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
De Gendt
1
73 kgFédrigo
2
66 kgLefèvre
3
67 kgDelpech
4
72 kgVaugrenard
5
72 kgHivert
6
62 kgArmée
7
72 kgGeslin
8
68 kgLadagnous
9
73 kgHupond
10
65 kgGrivko
11
70 kgCasar
12
63 kgHoogerland
13
65 kgGérard
14
70 kgKadri
15
66 kgRolland
16
70 kgTalabardon
17
67 kgKern
18
72 kgHuguet
19
66 kg
1
73 kgFédrigo
2
66 kgLefèvre
3
67 kgDelpech
4
72 kgVaugrenard
5
72 kgHivert
6
62 kgArmée
7
72 kgGeslin
8
68 kgLadagnous
9
73 kgHupond
10
65 kgGrivko
11
70 kgCasar
12
63 kgHoogerland
13
65 kgGérard
14
70 kgKadri
15
66 kgRolland
16
70 kgTalabardon
17
67 kgKern
18
72 kgHuguet
19
66 kg
Weight (KG) →
Result →
73
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | FÉDRIGO Pierrick | 66 |
3 | LEFÈVRE Laurent | 67 |
4 | DELPECH Jean-Luc | 72 |
5 | VAUGRENARD Benoît | 72 |
6 | HIVERT Jonathan | 62 |
7 | ARMÉE Sander | 72 |
8 | GESLIN Anthony | 68 |
9 | LADAGNOUS Matthieu | 73 |
10 | HUPOND Thierry | 65 |
11 | GRIVKO Andrey | 70 |
12 | CASAR Sandy | 63 |
13 | HOOGERLAND Johnny | 65 |
14 | GÉRARD Arnaud | 70 |
15 | KADRI Blel | 66 |
16 | ROLLAND Pierre | 70 |
17 | TALABARDON Yannick | 67 |
18 | KERN Christophe | 72 |
19 | HUGUET Yann | 66 |