Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 25
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Preidler
1
68 kgDupont
2
57 kgGautier
3
65 kgVaubourzeix
4
70 kgRolland
5
70 kgLindeman
6
69 kgLevarlet
7
67 kgFédrigo
8
66 kgDomont
9
65 kgVanoverberghe
10
65 kgVan De Walle
11
74 kgHivert
12
62 kgEngoulvent
13
82 kgWestra
14
74 kgVichot
15
74 kgLemoine
16
73 kgVaugrenard
17
72 kg
1
68 kgDupont
2
57 kgGautier
3
65 kgVaubourzeix
4
70 kgRolland
5
70 kgLindeman
6
69 kgLevarlet
7
67 kgFédrigo
8
66 kgDomont
9
65 kgVanoverberghe
10
65 kgVan De Walle
11
74 kgHivert
12
62 kgEngoulvent
13
82 kgWestra
14
74 kgVichot
15
74 kgLemoine
16
73 kgVaugrenard
17
72 kg
Weight (KG) →
Result →
82
57
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | PREIDLER Georg | 68 |
2 | DUPONT Hubert | 57 |
3 | GAUTIER Cyril | 65 |
4 | VAUBOURZEIX Thomas | 70 |
5 | ROLLAND Pierre | 70 |
6 | LINDEMAN Bert-Jan | 69 |
7 | LEVARLET Guillaume | 67 |
8 | FÉDRIGO Pierrick | 66 |
9 | DOMONT Axel | 65 |
10 | VANOVERBERGHE Arthur | 65 |
11 | VAN DE WALLE Jurgen | 74 |
12 | HIVERT Jonathan | 62 |
13 | ENGOULVENT Jimmy | 82 |
14 | WESTRA Lieuwe | 74 |
15 | VICHOT Arthur | 74 |
16 | LEMOINE Cyril | 73 |
17 | VAUGRENARD Benoît | 72 |