Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Boeckmans
1
76 kgTheuns
2
72 kgColedan
3
83 kgGautier
4
65 kgDuval
5
68 kgŠiškevičius
6
80 kgCourteille
7
62 kgGougeard
8
70 kgChetout
9
70 kgCoquard
10
59 kgvan Goethem
11
77 kgVanendert
12
64 kgLietaer
13
70 kgGallopin
14
69 kgLigthart
15
72 kgBlain
16
82 kgSarreau
17
76 kgPlanckaert
18
65 kg
1
76 kgTheuns
2
72 kgColedan
3
83 kgGautier
4
65 kgDuval
5
68 kgŠiškevičius
6
80 kgCourteille
7
62 kgGougeard
8
70 kgChetout
9
70 kgCoquard
10
59 kgvan Goethem
11
77 kgVanendert
12
64 kgLietaer
13
70 kgGallopin
14
69 kgLigthart
15
72 kgBlain
16
82 kgSarreau
17
76 kgPlanckaert
18
65 kg
Weight (KG) →
Result →
83
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BOECKMANS Kris | 76 |
2 | THEUNS Edward | 72 |
3 | COLEDAN Marco | 83 |
4 | GAUTIER Cyril | 65 |
5 | DUVAL Julien | 68 |
6 | ŠIŠKEVIČIUS Evaldas | 80 |
7 | COURTEILLE Arnaud | 62 |
8 | GOUGEARD Alexis | 70 |
9 | CHETOUT Loïc | 70 |
10 | COQUARD Bryan | 59 |
11 | VAN GOETHEM Brian | 77 |
12 | VANENDERT Dennis | 64 |
13 | LIETAER Eliot | 70 |
14 | GALLOPIN Tony | 69 |
15 | LIGTHART Pim | 72 |
16 | BLAIN Alexandre | 82 |
17 | SARREAU Marc | 76 |
18 | PLANCKAERT Baptiste | 65 |