Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Thalmann
1
61 kgCoppel
2
64 kgPinot
3
63 kgCousin
4
74 kgReichenbach
5
64 kgMadrazo
6
61 kgPeraud
7
62 kgDupont
8
57 kgŠiškevičius
9
80 kgBrun
10
73 kgReus
11
70 kgChavanel
12
73 kgDevenyns
13
65 kgLatour
14
66 kgJeannesson
15
65 kgClaeys
16
77 kgAntomarchi
17
70 kgScott
18
68 kgFeillu
20
62 kg
1
61 kgCoppel
2
64 kgPinot
3
63 kgCousin
4
74 kgReichenbach
5
64 kgMadrazo
6
61 kgPeraud
7
62 kgDupont
8
57 kgŠiškevičius
9
80 kgBrun
10
73 kgReus
11
70 kgChavanel
12
73 kgDevenyns
13
65 kgLatour
14
66 kgJeannesson
15
65 kgClaeys
16
77 kgAntomarchi
17
70 kgScott
18
68 kgFeillu
20
62 kg
Weight (KG) →
Result →
80
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | THALMANN Roland | 61 |
2 | COPPEL Jérôme | 64 |
3 | PINOT Thibaut | 63 |
4 | COUSIN Jérôme | 74 |
5 | REICHENBACH Sébastien | 64 |
6 | MADRAZO Ángel | 61 |
7 | PERAUD Jean-Christophe | 62 |
8 | DUPONT Hubert | 57 |
9 | ŠIŠKEVIČIUS Evaldas | 80 |
10 | BRUN Frederic | 73 |
11 | REUS Kai | 70 |
12 | CHAVANEL Sylvain | 73 |
13 | DEVENYNS Dries | 65 |
14 | LATOUR Pierre | 66 |
15 | JEANNESSON Arnold | 65 |
16 | CLAEYS Dimitri | 77 |
17 | ANTOMARCHI Julien | 70 |
18 | SCOTT Jacob | 68 |
20 | FEILLU Romain | 62 |