Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Sarreau
1
76 kgBoudat
2
70 kgCoquard
3
59 kgLaporte
4
76 kgDe Bie
5
65 kgCapiot
6
69 kgBarbin
7
60 kgWarlop
8
71 kgDehaes
9
73 kgMenten
10
68 kgFeillu
11
62 kgCalmejane
12
70 kgDieleman
13
78 kgBarbier
14
79 kgDumoulin
15
57 kgBagües
16
67 kgManzin
17
69 kgDe Gendt
18
75 kg
1
76 kgBoudat
2
70 kgCoquard
3
59 kgLaporte
4
76 kgDe Bie
5
65 kgCapiot
6
69 kgBarbin
7
60 kgWarlop
8
71 kgDehaes
9
73 kgMenten
10
68 kgFeillu
11
62 kgCalmejane
12
70 kgDieleman
13
78 kgBarbier
14
79 kgDumoulin
15
57 kgBagües
16
67 kgManzin
17
69 kgDe Gendt
18
75 kg
Weight (KG) →
Result →
79
57
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | SARREAU Marc | 76 |
2 | BOUDAT Thomas | 70 |
3 | COQUARD Bryan | 59 |
4 | LAPORTE Christophe | 76 |
5 | DE BIE Sean | 65 |
6 | CAPIOT Amaury | 69 |
7 | BARBIN Enrico | 60 |
8 | WARLOP Jordi | 71 |
9 | DEHAES Kenny | 73 |
10 | MENTEN Milan | 68 |
11 | FEILLU Romain | 62 |
12 | CALMEJANE Lilian | 70 |
13 | DIELEMAN Michiel | 78 |
14 | BARBIER Rudy | 79 |
15 | DUMOULIN Samuel | 57 |
16 | BAGÜES Aritz | 67 |
17 | MANZIN Lorrenzo | 69 |
18 | DE GENDT Aimé | 75 |