Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Zimmermann
1
70 kgMárquez
2
66 kgClarke
3
63 kgO'Connor
4
67 kgCam
5
61 kgCosnefroy
6
65 kgLatour
7
66 kgClaeys
8
77 kgGeniets
9
73 kgMałecki
10
69 kgDe Bondt
11
73 kgBeppu
12
69 kgCort
13
68 kgGonçalves
14
70 kgBettiol
15
69 kgVichot
16
74 kgHivert
17
62 kgValgren
18
71 kgSimmons
19
73 kgVan Niekerk
20
64 kg
1
70 kgMárquez
2
66 kgClarke
3
63 kgO'Connor
4
67 kgCam
5
61 kgCosnefroy
6
65 kgLatour
7
66 kgClaeys
8
77 kgGeniets
9
73 kgMałecki
10
69 kgDe Bondt
11
73 kgBeppu
12
69 kgCort
13
68 kgGonçalves
14
70 kgBettiol
15
69 kgVichot
16
74 kgHivert
17
62 kgValgren
18
71 kgSimmons
19
73 kgVan Niekerk
20
64 kg
Weight (KG) →
Result →
77
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | ZIMMERMANN Georg | 70 |
2 | MÁRQUEZ Martí | 66 |
3 | CLARKE Simon | 63 |
4 | O'CONNOR Ben | 67 |
5 | CAM Maxime | 61 |
6 | COSNEFROY Benoît | 65 |
7 | LATOUR Pierre | 66 |
8 | CLAEYS Dimitri | 77 |
9 | GENIETS Kevin | 73 |
10 | MAŁECKI Kamil | 69 |
11 | DE BONDT Dries | 73 |
12 | BEPPU Fumiyuki | 69 |
13 | CORT Magnus | 68 |
14 | GONÇALVES José | 70 |
15 | BETTIOL Alberto | 69 |
16 | VICHOT Arthur | 74 |
17 | HIVERT Jonathan | 62 |
18 | VALGREN Michael | 71 |
19 | SIMMONS Quinn | 73 |
20 | VAN NIEKERK Morné | 64 |