Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Stewart
1
66 kgOldani
2
65 kgAdrià
3
64 kgBrunel
4
70 kgGarcía Pierna
5
67 kgBayer
6
71 kgVan Moer
7
79 kgKron
8
63 kgLouvel
9
77 kgSkjelmose
10
65 kgSuter
11
75 kgDelacroix
12
70 kgMeeus
13
80 kgTabellion
14
72 kgWandahl
15
61 kgRenard
16
74 kgŘepa
17
71 kgRutsch
18
82 kgHayter
19
70 kgTesson
20
59 kgThijssen
21
74 kgPaquot
22
70 kgvan den Berg
23
72 kg
1
66 kgOldani
2
65 kgAdrià
3
64 kgBrunel
4
70 kgGarcía Pierna
5
67 kgBayer
6
71 kgVan Moer
7
79 kgKron
8
63 kgLouvel
9
77 kgSkjelmose
10
65 kgSuter
11
75 kgDelacroix
12
70 kgMeeus
13
80 kgTabellion
14
72 kgWandahl
15
61 kgRenard
16
74 kgŘepa
17
71 kgRutsch
18
82 kgHayter
19
70 kgTesson
20
59 kgThijssen
21
74 kgPaquot
22
70 kgvan den Berg
23
72 kg
Weight (KG) →
Result →
82
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | STEWART Jake | 66 |
2 | OLDANI Stefano | 65 |
3 | ADRIÀ Roger | 64 |
4 | BRUNEL Alexys | 70 |
5 | GARCÍA PIERNA Raúl | 67 |
6 | BAYER Tobias | 71 |
7 | VAN MOER Brent | 79 |
8 | KRON Andreas | 63 |
9 | LOUVEL Matis | 77 |
10 | SKJELMOSE Mattias | 65 |
11 | SUTER Joel | 75 |
12 | DELACROIX Théo | 70 |
13 | MEEUS Jordi | 80 |
14 | TABELLION Valentin | 72 |
15 | WANDAHL Frederik | 61 |
16 | RENARD Alexis | 74 |
17 | ŘEPA Vojtěch | 71 |
18 | RUTSCH Jonas | 82 |
19 | HAYTER Ethan | 70 |
20 | TESSON Jason | 59 |
21 | THIJSSEN Gerben | 74 |
22 | PAQUOT Tom | 70 |
23 | VAN DEN BERG Lars | 72 |