Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Johannessen
1
62 kgMiquel
2
65 kgBarré
3
68 kgLapeira
4
64 kgLouvel
5
77 kgMendez
6
57 kgSheffield
7
73 kgStrong
8
63 kgMarit
9
72 kgTiberi
10
62 kgRaugel
11
70 kgVanhoof
12
75 kgSánchez
13
64 kgVerre
14
59 kgvan der Tuuk
15
64 kgDelacroix
16
70 kgRuiz
17
65 kgBaroncini
18
74 kgParisella
19
78 kgPaquet
20
60 kgTulett
21
56 kgHeiduk
22
70 kgPaquot
23
70 kgJones
24
82 kg
1
62 kgMiquel
2
65 kgBarré
3
68 kgLapeira
4
64 kgLouvel
5
77 kgMendez
6
57 kgSheffield
7
73 kgStrong
8
63 kgMarit
9
72 kgTiberi
10
62 kgRaugel
11
70 kgVanhoof
12
75 kgSánchez
13
64 kgVerre
14
59 kgvan der Tuuk
15
64 kgDelacroix
16
70 kgRuiz
17
65 kgBaroncini
18
74 kgParisella
19
78 kgPaquet
20
60 kgTulett
21
56 kgHeiduk
22
70 kgPaquot
23
70 kgJones
24
82 kg
Weight (KG) →
Result →
82
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANNESSEN Tobias Halland | 62 |
2 | MIQUEL Pau | 65 |
3 | BARRÉ Louis | 68 |
4 | LAPEIRA Paul | 64 |
5 | LOUVEL Matis | 77 |
6 | MENDEZ Daniel Alejandro | 57 |
7 | SHEFFIELD Magnus | 73 |
8 | STRONG Corbin | 63 |
9 | MARIT Arne | 72 |
10 | TIBERI Antonio | 62 |
11 | RAUGEL Antoine | 70 |
12 | VANHOOF Ward | 75 |
13 | SÁNCHEZ Eugenio | 64 |
14 | VERRE Alessandro | 59 |
15 | VAN DER TUUK Danny | 64 |
16 | DELACROIX Théo | 70 |
17 | RUIZ Ibon | 65 |
18 | BARONCINI Filippo | 74 |
19 | PARISELLA Raphael | 78 |
20 | PAQUET Tom | 60 |
21 | TULETT Ben | 56 |
22 | HEIDUK Kim | 70 |
23 | PAQUOT Tom | 70 |
24 | JONES Taj | 82 |