Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
De Lie
1
78 kgWatson
2
68 kgFerron
3
67 kgPedersen
4
76 kgCosnefroy
5
65 kgTeuns
6
64 kgSkjelmose
7
65 kgBarré
8
68 kgVanmarcke
9
77 kgPiccolo
10
64 kgPowless
11
67 kgLatour
12
66 kgSuter
13
75 kgMertz
14
70 kgVan Poucke
15
68 kgMiquel
16
65 kgVan Avermaet
17
74 kgBonnamour
19
70 kgVauquelin
20
69 kgTulett
21
56 kgDelettre
22
62 kgJegat
24
59 kgBerckmoes
25
61 kg
1
78 kgWatson
2
68 kgFerron
3
67 kgPedersen
4
76 kgCosnefroy
5
65 kgTeuns
6
64 kgSkjelmose
7
65 kgBarré
8
68 kgVanmarcke
9
77 kgPiccolo
10
64 kgPowless
11
67 kgLatour
12
66 kgSuter
13
75 kgMertz
14
70 kgVan Poucke
15
68 kgMiquel
16
65 kgVan Avermaet
17
74 kgBonnamour
19
70 kgVauquelin
20
69 kgTulett
21
56 kgDelettre
22
62 kgJegat
24
59 kgBerckmoes
25
61 kg
Weight (KG) →
Result →
78
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | DE LIE Arnaud | 78 |
2 | WATSON Samuel | 68 |
3 | FERRON Valentin | 67 |
4 | PEDERSEN Mads | 76 |
5 | COSNEFROY Benoît | 65 |
6 | TEUNS Dylan | 64 |
7 | SKJELMOSE Mattias | 65 |
8 | BARRÉ Louis | 68 |
9 | VANMARCKE Sep | 77 |
10 | PICCOLO Andrea | 64 |
11 | POWLESS Neilson | 67 |
12 | LATOUR Pierre | 66 |
13 | SUTER Joel | 75 |
14 | MERTZ Rémy | 70 |
15 | VAN POUCKE Aaron | 68 |
16 | MIQUEL Pau | 65 |
17 | VAN AVERMAET Greg | 74 |
19 | BONNAMOUR Franck | 70 |
20 | VAUQUELIN Kévin | 69 |
21 | TULETT Ben | 56 |
22 | DELETTRE Alexandre | 62 |
24 | JEGAT Jordan | 59 |
25 | BERCKMOES Jenno | 61 |