Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Braet
1
68 kgPowless
2
67 kgSkjelmose
3
65 kgDe Bondt
4
73 kgVauquelin
5
69 kgChampion
6
66 kgTurner
7
74 kgPedersen
8
70 kgTulett
10
56 kgLatour
11
66 kgGuégan
12
71 kgPaleni
13
65 kgBastiaens
14
76 kgTeuns
15
64 kgMosca
16
65 kgSivakov
17
70 kgPinot
18
63 kgPellaud
19
70 kgWatson
20
68 kgRobeet
21
75 kgDe Lie
22
78 kgVan Moer
23
79 kg
1
68 kgPowless
2
67 kgSkjelmose
3
65 kgDe Bondt
4
73 kgVauquelin
5
69 kgChampion
6
66 kgTurner
7
74 kgPedersen
8
70 kgTulett
10
56 kgLatour
11
66 kgGuégan
12
71 kgPaleni
13
65 kgBastiaens
14
76 kgTeuns
15
64 kgMosca
16
65 kgSivakov
17
70 kgPinot
18
63 kgPellaud
19
70 kgWatson
20
68 kgRobeet
21
75 kgDe Lie
22
78 kgVan Moer
23
79 kg
Weight (KG) →
Result →
79
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BRAET Vito | 68 |
2 | POWLESS Neilson | 67 |
3 | SKJELMOSE Mattias | 65 |
4 | DE BONDT Dries | 73 |
5 | VAUQUELIN Kévin | 69 |
6 | CHAMPION Thomas | 66 |
7 | TURNER Ben | 74 |
8 | PEDERSEN Mads | 70 |
10 | TULETT Ben | 56 |
11 | LATOUR Pierre | 66 |
12 | GUÉGAN Maël | 71 |
13 | PALENI Enzo | 65 |
14 | BASTIAENS Ayco | 76 |
15 | TEUNS Dylan | 64 |
16 | MOSCA Jacopo | 65 |
17 | SIVAKOV Pavel | 70 |
18 | PINOT Thibaut | 63 |
19 | PELLAUD Simon | 70 |
20 | WATSON Samuel | 68 |
21 | ROBEET Ludovic | 75 |
22 | DE LIE Arnaud | 78 |
23 | VAN MOER Brent | 79 |