Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Vauquelin
1
69 kgBaudin
2
64 kgBerckmoes
3
61 kgLaurance
4
63 kgSegaert
5
79 kgPonomar
6
65 kgBasset
8
69 kgBrenner
9
59 kgRafferty
11
65 kgJuillard
12
60 kgVermoote
13
73 kgJulien
15
70 kgCrommelinck
16
60 kgDebruyne
17
66 kgRetegi
18
64 kgLe Huitouze
20
71 kgGruel
21
70 kgDehairs
22
82 kgHennequin
23
64 kg
1
69 kgBaudin
2
64 kgBerckmoes
3
61 kgLaurance
4
63 kgSegaert
5
79 kgPonomar
6
65 kgBasset
8
69 kgBrenner
9
59 kgRafferty
11
65 kgJuillard
12
60 kgVermoote
13
73 kgJulien
15
70 kgCrommelinck
16
60 kgDebruyne
17
66 kgRetegi
18
64 kgLe Huitouze
20
71 kgGruel
21
70 kgDehairs
22
82 kgHennequin
23
64 kg
Weight (KG) →
Result →
82
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VAUQUELIN Kévin | 69 |
2 | BAUDIN Alex | 64 |
3 | BERCKMOES Jenno | 61 |
4 | LAURANCE Axel | 63 |
5 | SEGAERT Alec | 79 |
6 | PONOMAR Andrii | 65 |
8 | BASSET Pierre-Henry | 69 |
9 | BRENNER Marco | 59 |
11 | RAFFERTY Darren | 65 |
12 | JUILLARD Maximilien | 60 |
13 | VERMOOTE Jelle | 73 |
15 | JULIEN Matisse | 70 |
16 | CROMMELINCK Melvin | 60 |
17 | DEBRUYNE Ramses | 66 |
18 | RETEGI Mikel | 64 |
20 | LE HUITOUZE Eddy | 71 |
21 | GRUEL Thibaud | 70 |
22 | DEHAIRS Simon | 82 |
23 | HENNEQUIN Paul | 64 |