Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Vauquelin
1
69 kgDémare
2
76 kgDe Lie
3
78 kgTeuns
4
64 kgPenhoët
5
64 kgGeniets
6
73 kgCavagna
7
78 kgTouzé
8
69 kgDelacroix
9
70 kgGuernalec
10
71 kgChampion
11
66 kgLatour
12
66 kgAugé
14
61 kgVan Hemelen
16
71 kgDecomble
17
62 kgDoubey
19
62 kgMaris
20
64 kgVandenstorme
22
64 kgColman
23
73 kgPerez
25
70 kgLecroq
26
70 kgDelettre
27
62 kgGuillon
28
66 kg
1
69 kgDémare
2
76 kgDe Lie
3
78 kgTeuns
4
64 kgPenhoët
5
64 kgGeniets
6
73 kgCavagna
7
78 kgTouzé
8
69 kgDelacroix
9
70 kgGuernalec
10
71 kgChampion
11
66 kgLatour
12
66 kgAugé
14
61 kgVan Hemelen
16
71 kgDecomble
17
62 kgDoubey
19
62 kgMaris
20
64 kgVandenstorme
22
64 kgColman
23
73 kgPerez
25
70 kgLecroq
26
70 kgDelettre
27
62 kgGuillon
28
66 kg
Weight (KG) →
Result →
78
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VAUQUELIN Kévin | 69 |
2 | DÉMARE Arnaud | 76 |
3 | DE LIE Arnaud | 78 |
4 | TEUNS Dylan | 64 |
5 | PENHOËT Paul | 64 |
6 | GENIETS Kevin | 73 |
7 | CAVAGNA Rémi | 78 |
8 | TOUZÉ Damien | 69 |
9 | DELACROIX Théo | 70 |
10 | GUERNALEC Thibault | 71 |
11 | CHAMPION Thomas | 66 |
12 | LATOUR Pierre | 66 |
14 | AUGÉ Ronan | 61 |
16 | VAN HEMELEN Vincent | 71 |
17 | DECOMBLE Maxime | 62 |
19 | DOUBEY Fabien | 62 |
20 | MARIS Elias | 64 |
22 | VANDENSTORME Dylan | 64 |
23 | COLMAN Alex | 73 |
25 | PEREZ Anthony | 70 |
26 | LECROQ Jérémy | 70 |
27 | DELETTRE Alexandre | 62 |
28 | GUILLON Célestin | 66 |