Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Démare
1
76 kgDe Lie
2
78 kgVauquelin
3
69 kgPenhoët
4
64 kgChampion
5
66 kgDelacroix
6
70 kgGeniets
7
73 kgTouzé
9
69 kgAugé
10
61 kgTeuns
12
64 kgTabellion
13
72 kgRiou
14
68 kgLatour
15
66 kgMaris
18
64 kgGuernalec
19
71 kgCavagna
21
78 kgVandenstorme
22
64 kgDoubey
23
62 kgVan Hemelen
24
71 kgColman
25
73 kgLecroq
27
70 kgGuillon
28
66 kg
1
76 kgDe Lie
2
78 kgVauquelin
3
69 kgPenhoët
4
64 kgChampion
5
66 kgDelacroix
6
70 kgGeniets
7
73 kgTouzé
9
69 kgAugé
10
61 kgTeuns
12
64 kgTabellion
13
72 kgRiou
14
68 kgLatour
15
66 kgMaris
18
64 kgGuernalec
19
71 kgCavagna
21
78 kgVandenstorme
22
64 kgDoubey
23
62 kgVan Hemelen
24
71 kgColman
25
73 kgLecroq
27
70 kgGuillon
28
66 kg
Weight (KG) →
Result →
78
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | DE LIE Arnaud | 78 |
3 | VAUQUELIN Kévin | 69 |
4 | PENHOËT Paul | 64 |
5 | CHAMPION Thomas | 66 |
6 | DELACROIX Théo | 70 |
7 | GENIETS Kevin | 73 |
9 | TOUZÉ Damien | 69 |
10 | AUGÉ Ronan | 61 |
12 | TEUNS Dylan | 64 |
13 | TABELLION Valentin | 72 |
14 | RIOU Alan | 68 |
15 | LATOUR Pierre | 66 |
18 | MARIS Elias | 64 |
19 | GUERNALEC Thibault | 71 |
21 | CAVAGNA Rémi | 78 |
22 | VANDENSTORME Dylan | 64 |
23 | DOUBEY Fabien | 62 |
24 | VAN HEMELEN Vincent | 71 |
25 | COLMAN Alex | 73 |
27 | LECROQ Jérémy | 70 |
28 | GUILLON Célestin | 66 |