Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Wegelius
2
62 kgFritsch
3
65 kgSabaliauskas
5
76 kgPetrov
6
70 kgPidgornyy
8
72 kgKrivtsov
9
72 kgLang
10
77 kgHushovd
12
83 kgSchreck
13
76 kgCasar
17
63 kgMutsaars
22
67 kgKrupa
27
74 kgHiekmann
29
70 kgKuyckx
30
68 kgLjungblad
32
70 kgZampieri
33
62 kgSchep
38
80 kgDevolder
43
72 kgPaulinho
45
64 kg
2
62 kgFritsch
3
65 kgSabaliauskas
5
76 kgPetrov
6
70 kgPidgornyy
8
72 kgKrivtsov
9
72 kgLang
10
77 kgHushovd
12
83 kgSchreck
13
76 kgCasar
17
63 kgMutsaars
22
67 kgKrupa
27
74 kgHiekmann
29
70 kgKuyckx
30
68 kgLjungblad
32
70 kgZampieri
33
62 kgSchep
38
80 kgDevolder
43
72 kgPaulinho
45
64 kg
Weight (KG) →
Result →
83
62
2
45
# | Rider | Weight (KG) |
---|---|---|
2 | WEGELIUS Charles | 62 |
3 | FRITSCH Nicolas | 65 |
5 | SABALIAUSKAS Marius | 76 |
6 | PETROV Evgeni | 70 |
8 | PIDGORNYY Ruslan | 72 |
9 | KRIVTSOV Yuriy | 72 |
10 | LANG Sebastian | 77 |
12 | HUSHOVD Thor | 83 |
13 | SCHRECK Stephan | 76 |
17 | CASAR Sandy | 63 |
22 | MUTSAARS Ronald | 67 |
27 | KRUPA Dawid | 74 |
29 | HIEKMANN Torsten | 70 |
30 | KUYCKX Jan | 68 |
32 | LJUNGBLAD Jonas | 70 |
33 | ZAMPIERI Steve | 62 |
38 | SCHEP Peter | 80 |
43 | DEVOLDER Stijn | 72 |
45 | PAULINHO Sérgio Miguel | 64 |