Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Müller
1
69 kgBrajkovič
2
60 kgCornu
5
78 kgKunitski
6
72 kgKaisen
7
82 kgNibali
8
65 kgMazur
9
73 kgBodnar
10
68 kgGrivko
11
70 kgBelkov
12
71 kgMartens
13
69 kgGrabovskyy
14
69 kgde Kort
17
69 kgAscani
19
75 kgRaboň
21
74 kgVastaranta
25
63 kgStamsnijder
28
76 kgVelits
30
63 kgRoche
31
70 kgBagdonas
35
78 kgVelits
36
70 kgSiutsou
40
68 kgBenetseder
44
65 kgGraf
48
72 kg
1
69 kgBrajkovič
2
60 kgCornu
5
78 kgKunitski
6
72 kgKaisen
7
82 kgNibali
8
65 kgMazur
9
73 kgBodnar
10
68 kgGrivko
11
70 kgBelkov
12
71 kgMartens
13
69 kgGrabovskyy
14
69 kgde Kort
17
69 kgAscani
19
75 kgRaboň
21
74 kgVastaranta
25
63 kgStamsnijder
28
76 kgVelits
30
63 kgRoche
31
70 kgBagdonas
35
78 kgVelits
36
70 kgSiutsou
40
68 kgBenetseder
44
65 kgGraf
48
72 kg
Weight (KG) →
Result →
82
60
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | MÜLLER Christian | 69 |
2 | BRAJKOVIČ Janez | 60 |
5 | CORNU Dominique | 78 |
6 | KUNITSKI Andrei | 72 |
7 | KAISEN Olivier | 82 |
8 | NIBALI Vincenzo | 65 |
9 | MAZUR Peter | 73 |
10 | BODNAR Łukasz | 68 |
11 | GRIVKO Andrey | 70 |
12 | BELKOV Maxim | 71 |
13 | MARTENS Paul | 69 |
14 | GRABOVSKYY Dmytro | 69 |
17 | DE KORT Koen | 69 |
19 | ASCANI Luca | 75 |
21 | RABOŇ František | 74 |
25 | VASTARANTA Jukka | 63 |
28 | STAMSNIJDER Tom | 76 |
30 | VELITS Peter | 63 |
31 | ROCHE Nicolas | 70 |
35 | BAGDONAS Gediminas | 78 |
36 | VELITS Martin | 70 |
40 | SIUTSOU Kanstantsin | 68 |
44 | BENETSEDER Josef | 65 |
48 | GRAF Andreas | 72 |