Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Örken
1
69 kgJabrayilov
2
52 kgTiryaki
4
67 kgAsadov
5
77 kgBalkan
7
69 kgKlisurić
13
70 kgKhafi
16
65 kgMikayilzade
17
66 kgKolev
18
64 kgBalkan
19
64 kgLavrentyev
20
88 kgSamli
22
75 kgSayar
27
64 kgDyankov
32
61 kgDyankov
40
65 kgMojsilović
41
73 kgTaskan
44
65 kgSilchenko
45
68 kgPinar
53
69 kgKartal
55
70 kg
1
69 kgJabrayilov
2
52 kgTiryaki
4
67 kgAsadov
5
77 kgBalkan
7
69 kgKlisurić
13
70 kgKhafi
16
65 kgMikayilzade
17
66 kgKolev
18
64 kgBalkan
19
64 kgLavrentyev
20
88 kgSamli
22
75 kgSayar
27
64 kgDyankov
32
61 kgDyankov
40
65 kgMojsilović
41
73 kgTaskan
44
65 kgSilchenko
45
68 kgPinar
53
69 kgKartal
55
70 kg
Weight (KG) →
Result →
88
52
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | ÖRKEN Ahmet | 69 |
2 | JABRAYILOV Samir | 52 |
4 | TIRYAKI Oguzhan | 67 |
5 | ASADOV Elchin | 77 |
7 | BALKAN Onur | 69 |
13 | KLISURIĆ Stevan | 70 |
16 | KHAFI Oussama | 65 |
17 | MIKAYILZADE Musa | 66 |
18 | KOLEV Yoan | 64 |
19 | BALKAN Serkan | 64 |
20 | LAVRENTYEV Anton | 88 |
22 | SAMLI Feritcan | 75 |
27 | SAYAR Mustafa | 64 |
32 | DYANKOV Nikolay | 61 |
40 | DYANKOV Denis | 65 |
41 | MOJSILOVIĆ Ivan | 73 |
44 | TASKAN Oguzhan | 65 |
45 | SILCHENKO Artyom | 68 |
53 | PINAR Timur | 69 |
55 | KARTAL Sinan | 70 |