Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 86
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Baldo
1
73 kgLang
4
73 kgBiałobłocki
6
79 kgMcconvey
7
67 kgFumeaux
8
61 kgBagdonas
9
78 kgMcCann
11
73 kgKrotký
19
73 kgNorman Leth
23
75 kgRichardson
37
75 kgBennett
47
73 kgGullen
48
65 kgIrvine
60
80 kgBichlmann
64
72 kgEefting-Bloem
68
75 kgVingerling
78
75 kgAregger
83
70 kgSchäfer
111
66 kg
1
73 kgLang
4
73 kgBiałobłocki
6
79 kgMcconvey
7
67 kgFumeaux
8
61 kgBagdonas
9
78 kgMcCann
11
73 kgKrotký
19
73 kgNorman Leth
23
75 kgRichardson
37
75 kgBennett
47
73 kgGullen
48
65 kgIrvine
60
80 kgBichlmann
64
72 kgEefting-Bloem
68
75 kgVingerling
78
75 kgAregger
83
70 kgSchäfer
111
66 kg
Weight (KG) →
Result →
80
61
1
111
# | Rider | Weight (KG) |
---|---|---|
1 | BALDO Nicolas | 73 |
4 | LANG Pirmin | 73 |
6 | BIAŁOBŁOCKI Marcin | 79 |
7 | MCCONVEY Connor | 67 |
8 | FUMEAUX Jonathan | 61 |
9 | BAGDONAS Gediminas | 78 |
11 | MCCANN David | 73 |
19 | KROTKÝ Rostislav | 73 |
23 | NORMAN LETH Lasse | 75 |
37 | RICHARDSON Simon | 75 |
47 | BENNETT Sam | 73 |
48 | GULLEN James | 65 |
60 | IRVINE Martyn | 80 |
64 | BICHLMANN Daniel | 72 |
68 | EEFTING-BLOEM Roy | 75 |
78 | VINGERLING Michael | 75 |
83 | AREGGER Marcel | 70 |
111 | SCHÄFER Timo | 66 |