Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.1 * weight + 277
This means that on average for every extra kilogram weight a rider loses -3.1 positions in the result.
Białobłocki
1
79 kgBaldo
3
73 kgRichardson
4
75 kgEefting-Bloem
5
75 kgBagdonas
6
78 kgAregger
12
70 kgLang
15
73 kgKrotký
16
73 kgBichlmann
28
72 kgFumeaux
44
61 kgSmith
47
67 kgMcconvey
49
67 kgCraven
59
75 kgMcCann
72
73 kgNorman Leth
82
75 kgVingerling
87
75 kgIrvine
90
80 kgGullen
102
65 kgBennett
113
73 kgSchäfer
140
66 kgO'Loughlin
143
68 kg
1
79 kgBaldo
3
73 kgRichardson
4
75 kgEefting-Bloem
5
75 kgBagdonas
6
78 kgAregger
12
70 kgLang
15
73 kgKrotký
16
73 kgBichlmann
28
72 kgFumeaux
44
61 kgSmith
47
67 kgMcconvey
49
67 kgCraven
59
75 kgMcCann
72
73 kgNorman Leth
82
75 kgVingerling
87
75 kgIrvine
90
80 kgGullen
102
65 kgBennett
113
73 kgSchäfer
140
66 kgO'Loughlin
143
68 kg
Weight (KG) →
Result →
80
61
1
143
# | Rider | Weight (KG) |
---|---|---|
1 | BIAŁOBŁOCKI Marcin | 79 |
3 | BALDO Nicolas | 73 |
4 | RICHARDSON Simon | 75 |
5 | EEFTING-BLOEM Roy | 75 |
6 | BAGDONAS Gediminas | 78 |
12 | AREGGER Marcel | 70 |
15 | LANG Pirmin | 73 |
16 | KROTKÝ Rostislav | 73 |
28 | BICHLMANN Daniel | 72 |
44 | FUMEAUX Jonathan | 61 |
47 | SMITH Dion | 67 |
49 | MCCONVEY Connor | 67 |
59 | CRAVEN Dan | 75 |
72 | MCCANN David | 73 |
82 | NORMAN LETH Lasse | 75 |
87 | VINGERLING Michael | 75 |
90 | IRVINE Martyn | 80 |
102 | GULLEN James | 65 |
113 | BENNETT Sam | 73 |
140 | SCHÄFER Timo | 66 |
143 | O'LOUGHLIN David | 68 |