Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.3 * weight + 199
This means that on average for every extra kilogram weight a rider loses -2.3 positions in the result.
Bagdonas
1
78 kgBiałobłocki
2
79 kgEefting-Bloem
3
75 kgLang
11
73 kgBichlmann
16
72 kgMcconvey
18
67 kgMcCann
21
73 kgKrotký
26
73 kgAregger
27
70 kgBaldo
28
73 kgFumeaux
37
61 kgBennett
39
73 kgNorman Leth
43
75 kgVingerling
46
75 kgIrvine
50
80 kgRichardson
59
75 kgCraven
60
75 kgGullen
78
65 kgSchäfer
115
66 kg
1
78 kgBiałobłocki
2
79 kgEefting-Bloem
3
75 kgLang
11
73 kgBichlmann
16
72 kgMcconvey
18
67 kgMcCann
21
73 kgKrotký
26
73 kgAregger
27
70 kgBaldo
28
73 kgFumeaux
37
61 kgBennett
39
73 kgNorman Leth
43
75 kgVingerling
46
75 kgIrvine
50
80 kgRichardson
59
75 kgCraven
60
75 kgGullen
78
65 kgSchäfer
115
66 kg
Weight (KG) →
Result →
80
61
1
115
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | BIAŁOBŁOCKI Marcin | 79 |
3 | EEFTING-BLOEM Roy | 75 |
11 | LANG Pirmin | 73 |
16 | BICHLMANN Daniel | 72 |
18 | MCCONVEY Connor | 67 |
21 | MCCANN David | 73 |
26 | KROTKÝ Rostislav | 73 |
27 | AREGGER Marcel | 70 |
28 | BALDO Nicolas | 73 |
37 | FUMEAUX Jonathan | 61 |
39 | BENNETT Sam | 73 |
43 | NORMAN LETH Lasse | 75 |
46 | VINGERLING Michael | 75 |
50 | IRVINE Martyn | 80 |
59 | RICHARDSON Simon | 75 |
60 | CRAVEN Dan | 75 |
78 | GULLEN James | 65 |
115 | SCHÄFER Timo | 66 |