Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 97
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Norman Leth
1
75 kgBennett
3
73 kgBagdonas
4
78 kgEefting-Bloem
5
75 kgBiałobłocki
6
79 kgKrotký
7
73 kgLang
10
73 kgBichlmann
19
72 kgMcCann
21
73 kgFumeaux
23
61 kgBaldo
24
73 kgMcconvey
28
67 kgVingerling
53
75 kgAregger
80
70 kgSchäfer
83
66 kgGullen
85
65 kgRichardson
90
75 kgIrvine
122
80 kg
1
75 kgBennett
3
73 kgBagdonas
4
78 kgEefting-Bloem
5
75 kgBiałobłocki
6
79 kgKrotký
7
73 kgLang
10
73 kgBichlmann
19
72 kgMcCann
21
73 kgFumeaux
23
61 kgBaldo
24
73 kgMcconvey
28
67 kgVingerling
53
75 kgAregger
80
70 kgSchäfer
83
66 kgGullen
85
65 kgRichardson
90
75 kgIrvine
122
80 kg
Weight (KG) →
Result →
80
61
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | NORMAN LETH Lasse | 75 |
3 | BENNETT Sam | 73 |
4 | BAGDONAS Gediminas | 78 |
5 | EEFTING-BLOEM Roy | 75 |
6 | BIAŁOBŁOCKI Marcin | 79 |
7 | KROTKÝ Rostislav | 73 |
10 | LANG Pirmin | 73 |
19 | BICHLMANN Daniel | 72 |
21 | MCCANN David | 73 |
23 | FUMEAUX Jonathan | 61 |
24 | BALDO Nicolas | 73 |
28 | MCCONVEY Connor | 67 |
53 | VINGERLING Michael | 75 |
80 | AREGGER Marcel | 70 |
83 | SCHÄFER Timo | 66 |
85 | GULLEN James | 65 |
90 | RICHARDSON Simon | 75 |
122 | IRVINE Martyn | 80 |