Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.7 * weight + 223
This means that on average for every extra kilogram weight a rider loses -2.7 positions in the result.
Bagdonas
1
78 kgBennett
2
73 kgBiałobłocki
3
79 kgEefting-Bloem
4
75 kgLang
8
73 kgBichlmann
13
72 kgKrotký
16
73 kgVingerling
19
75 kgMcCann
28
73 kgMcconvey
29
67 kgBaldo
30
73 kgFumeaux
32
61 kgRichardson
38
75 kgIrvine
40
80 kgGullen
52
65 kgSchäfer
79
66 kgAregger
131
70 kg
1
78 kgBennett
2
73 kgBiałobłocki
3
79 kgEefting-Bloem
4
75 kgLang
8
73 kgBichlmann
13
72 kgKrotký
16
73 kgVingerling
19
75 kgMcCann
28
73 kgMcconvey
29
67 kgBaldo
30
73 kgFumeaux
32
61 kgRichardson
38
75 kgIrvine
40
80 kgGullen
52
65 kgSchäfer
79
66 kgAregger
131
70 kg
Weight (KG) →
Result →
80
61
1
131
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | BENNETT Sam | 73 |
3 | BIAŁOBŁOCKI Marcin | 79 |
4 | EEFTING-BLOEM Roy | 75 |
8 | LANG Pirmin | 73 |
13 | BICHLMANN Daniel | 72 |
16 | KROTKÝ Rostislav | 73 |
19 | VINGERLING Michael | 75 |
28 | MCCANN David | 73 |
29 | MCCONVEY Connor | 67 |
30 | BALDO Nicolas | 73 |
32 | FUMEAUX Jonathan | 61 |
38 | RICHARDSON Simon | 75 |
40 | IRVINE Martyn | 80 |
52 | GULLEN James | 65 |
79 | SCHÄFER Timo | 66 |
131 | AREGGER Marcel | 70 |