Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Białobłocki
1
79 kgMcconvey
2
67 kgGuldhammer
3
66 kgYates
9
58 kgDe Buyst
10
72 kgLampier
11
68 kgDoull
13
71 kgEbsen
18
58 kgVereecken
19
72 kgDe Ketele
21
66 kgBichlmann
23
72 kgOliphant
26
66 kgBennett
31
73 kgPorter
33
73 kgNorthey
35
69 kgEdmüller
37
70 kgArchbold
39
79 kgKrotký
42
73 kgDe Pauw
47
72 kgDe Gendt
55
75 kgLaverack
61
62 kgCataford
71
70 kgAtzori
103
72 kg
1
79 kgMcconvey
2
67 kgGuldhammer
3
66 kgYates
9
58 kgDe Buyst
10
72 kgLampier
11
68 kgDoull
13
71 kgEbsen
18
58 kgVereecken
19
72 kgDe Ketele
21
66 kgBichlmann
23
72 kgOliphant
26
66 kgBennett
31
73 kgPorter
33
73 kgNorthey
35
69 kgEdmüller
37
70 kgArchbold
39
79 kgKrotký
42
73 kgDe Pauw
47
72 kgDe Gendt
55
75 kgLaverack
61
62 kgCataford
71
70 kgAtzori
103
72 kg
Weight (KG) →
Result →
79
58
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | BIAŁOBŁOCKI Marcin | 79 |
2 | MCCONVEY Connor | 67 |
3 | GULDHAMMER Rasmus | 66 |
9 | YATES Simon | 58 |
10 | DE BUYST Jasper | 72 |
11 | LAMPIER Steven | 68 |
13 | DOULL Owain | 71 |
18 | EBSEN John | 58 |
19 | VEREECKEN Nicolas | 72 |
21 | DE KETELE Kenny | 66 |
23 | BICHLMANN Daniel | 72 |
26 | OLIPHANT Evan | 66 |
31 | BENNETT Sam | 73 |
33 | PORTER Elliott | 73 |
35 | NORTHEY Michael James | 69 |
37 | EDMÜLLER Benjamin | 70 |
39 | ARCHBOLD Shane | 79 |
42 | KROTKÝ Rostislav | 73 |
47 | DE PAUW Moreno | 72 |
55 | DE GENDT Aimé | 75 |
61 | LAVERACK Edward | 62 |
71 | CATAFORD Alexander | 70 |
103 | ATZORI Umberto | 72 |