Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Doull
1
71 kgBiałobłocki
2
79 kgVereecken
3
72 kgGuldhammer
4
66 kgBennett
6
73 kgMcconvey
7
67 kgEdmüller
8
70 kgDe Buyst
9
72 kgArchbold
12
79 kgDe Pauw
13
72 kgNorthey
14
69 kgOliphant
19
66 kgYates
20
58 kgLampier
30
68 kgDe Ketele
31
66 kgBichlmann
34
72 kgPorter
36
73 kg
1
71 kgBiałobłocki
2
79 kgVereecken
3
72 kgGuldhammer
4
66 kgBennett
6
73 kgMcconvey
7
67 kgEdmüller
8
70 kgDe Buyst
9
72 kgArchbold
12
79 kgDe Pauw
13
72 kgNorthey
14
69 kgOliphant
19
66 kgYates
20
58 kgLampier
30
68 kgDe Ketele
31
66 kgBichlmann
34
72 kgPorter
36
73 kg
Weight (KG) →
Result →
79
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | DOULL Owain | 71 |
2 | BIAŁOBŁOCKI Marcin | 79 |
3 | VEREECKEN Nicolas | 72 |
4 | GULDHAMMER Rasmus | 66 |
6 | BENNETT Sam | 73 |
7 | MCCONVEY Connor | 67 |
8 | EDMÜLLER Benjamin | 70 |
9 | DE BUYST Jasper | 72 |
12 | ARCHBOLD Shane | 79 |
13 | DE PAUW Moreno | 72 |
14 | NORTHEY Michael James | 69 |
19 | OLIPHANT Evan | 66 |
20 | YATES Simon | 58 |
30 | LAMPIER Steven | 68 |
31 | DE KETELE Kenny | 66 |
34 | BICHLMANN Daniel | 72 |
36 | PORTER Elliott | 73 |