Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Białobłocki
1
79 kgDoull
2
71 kgBennett
4
73 kgVereecken
6
72 kgEdmüller
7
70 kgMcconvey
8
67 kgGuldhammer
9
66 kgArchbold
10
79 kgDunne
12
88 kgPozdnyakov
13
67 kgYates
14
58 kgDe Buyst
15
72 kgNorthey
18
69 kgEefting-Bloem
19
75 kgMertens
25
73 kgDe Ketele
28
66 kgOliphant
31
66 kgDe Pauw
32
72 kgBichlmann
34
72 kgLampier
35
68 kg
1
79 kgDoull
2
71 kgBennett
4
73 kgVereecken
6
72 kgEdmüller
7
70 kgMcconvey
8
67 kgGuldhammer
9
66 kgArchbold
10
79 kgDunne
12
88 kgPozdnyakov
13
67 kgYates
14
58 kgDe Buyst
15
72 kgNorthey
18
69 kgEefting-Bloem
19
75 kgMertens
25
73 kgDe Ketele
28
66 kgOliphant
31
66 kgDe Pauw
32
72 kgBichlmann
34
72 kgLampier
35
68 kg
Weight (KG) →
Result →
88
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | BIAŁOBŁOCKI Marcin | 79 |
2 | DOULL Owain | 71 |
4 | BENNETT Sam | 73 |
6 | VEREECKEN Nicolas | 72 |
7 | EDMÜLLER Benjamin | 70 |
8 | MCCONVEY Connor | 67 |
9 | GULDHAMMER Rasmus | 66 |
10 | ARCHBOLD Shane | 79 |
12 | DUNNE Conor | 88 |
13 | POZDNYAKOV Kirill | 67 |
14 | YATES Simon | 58 |
15 | DE BUYST Jasper | 72 |
18 | NORTHEY Michael James | 69 |
19 | EEFTING-BLOEM Roy | 75 |
25 | MERTENS Tim | 73 |
28 | DE KETELE Kenny | 66 |
31 | OLIPHANT Evan | 66 |
32 | DE PAUW Moreno | 72 |
34 | BICHLMANN Daniel | 72 |
35 | LAMPIER Steven | 68 |