Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Białobłocki
1
79 kgDoull
2
71 kgGuldhammer
3
66 kgMcconvey
4
67 kgVereecken
5
72 kgEdmüller
6
70 kgBennett
9
73 kgDe Buyst
10
72 kgDe Pauw
11
72 kgArchbold
12
79 kgDunne
14
88 kgPozdnyakov
15
67 kgYates
16
58 kgNorthey
20
69 kgEefting-Bloem
21
75 kgMertens
27
73 kgDe Ketele
30
66 kgOliphant
32
66 kgLampier
34
68 kgBichlmann
35
72 kg
1
79 kgDoull
2
71 kgGuldhammer
3
66 kgMcconvey
4
67 kgVereecken
5
72 kgEdmüller
6
70 kgBennett
9
73 kgDe Buyst
10
72 kgDe Pauw
11
72 kgArchbold
12
79 kgDunne
14
88 kgPozdnyakov
15
67 kgYates
16
58 kgNorthey
20
69 kgEefting-Bloem
21
75 kgMertens
27
73 kgDe Ketele
30
66 kgOliphant
32
66 kgLampier
34
68 kgBichlmann
35
72 kg
Weight (KG) →
Result →
88
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | BIAŁOBŁOCKI Marcin | 79 |
2 | DOULL Owain | 71 |
3 | GULDHAMMER Rasmus | 66 |
4 | MCCONVEY Connor | 67 |
5 | VEREECKEN Nicolas | 72 |
6 | EDMÜLLER Benjamin | 70 |
9 | BENNETT Sam | 73 |
10 | DE BUYST Jasper | 72 |
11 | DE PAUW Moreno | 72 |
12 | ARCHBOLD Shane | 79 |
14 | DUNNE Conor | 88 |
15 | POZDNYAKOV Kirill | 67 |
16 | YATES Simon | 58 |
20 | NORTHEY Michael James | 69 |
21 | EEFTING-BLOEM Roy | 75 |
27 | MERTENS Tim | 73 |
30 | DE KETELE Kenny | 66 |
32 | OLIPHANT Evan | 66 |
34 | LAMPIER Steven | 68 |
35 | BICHLMANN Daniel | 72 |