Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Doull
1
71 kgBiałobłocki
2
79 kgVereecken
3
72 kgGuldhammer
5
66 kgMcconvey
6
67 kgEdmüller
7
70 kgDe Buyst
8
72 kgBennett
11
73 kgNorthey
12
69 kgDe Pauw
15
72 kgArchbold
16
79 kgYates
17
58 kgOliphant
27
66 kgLampier
30
68 kgDe Ketele
31
66 kgBichlmann
34
72 kgPorter
36
73 kg
1
71 kgBiałobłocki
2
79 kgVereecken
3
72 kgGuldhammer
5
66 kgMcconvey
6
67 kgEdmüller
7
70 kgDe Buyst
8
72 kgBennett
11
73 kgNorthey
12
69 kgDe Pauw
15
72 kgArchbold
16
79 kgYates
17
58 kgOliphant
27
66 kgLampier
30
68 kgDe Ketele
31
66 kgBichlmann
34
72 kgPorter
36
73 kg
Weight (KG) →
Result →
79
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | DOULL Owain | 71 |
2 | BIAŁOBŁOCKI Marcin | 79 |
3 | VEREECKEN Nicolas | 72 |
5 | GULDHAMMER Rasmus | 66 |
6 | MCCONVEY Connor | 67 |
7 | EDMÜLLER Benjamin | 70 |
8 | DE BUYST Jasper | 72 |
11 | BENNETT Sam | 73 |
12 | NORTHEY Michael James | 69 |
15 | DE PAUW Moreno | 72 |
16 | ARCHBOLD Shane | 79 |
17 | YATES Simon | 58 |
27 | OLIPHANT Evan | 66 |
30 | LAMPIER Steven | 68 |
31 | DE KETELE Kenny | 66 |
34 | BICHLMANN Daniel | 72 |
36 | PORTER Elliott | 73 |